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Pressure dependence of the sound velocity in a two-dimensional lattice of Hertz-Mindlin balls
Mean-field description

B. Velický* and C. Caroli
Groupe de Physique des Solides, 2 place Jussieu, 75251 Paris Cedex 05, France†

~Received 25 July 2001; published 25 January 2002!

We study the dependence on the external pressureP of the velocitiesvL,T of long wavelength sound waves
in a confined two-dimensional hexagonal close-packed lattice of 3D elastic frictional balls interacting via
one-sided Hertz-Mindlin contact forces, whose diameters exhibit mild dispersion. The presence of an under-
lying long range order enables us to build an effective medium description, which incorporates the radial
fluctuations of the contact forces acting on a single site. Due to the nonlinearity of Hertz elasticity, self-
consistency results in a highly nonlinear differential equation for the ‘‘equation of state’’ linking the effective
stiffness of the array with the applied pressure, from which sound velocities are then obtained. The results are
in excellent agreement with existing experimental results and simulations in the high- and intermediate-
pressure regimes. It emerges from the analysis that the departure ofvL(P) from the idealP1/6 Hertz behavior
must be attributed primarily to the fluctuations of the stress field, rather than to the pressure dependence of the
number of contacts.
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I. INTRODUCTION

Sound propagation in a dry confined granular medi
still is, to a large extent, an open question. In particular
long-standing puzzle is concerned with explaining the dep
dence of sound velocities on the externally applied press
P.

The load bearing intergrain contacts, which ensure
mechanical stability of the packing, are of the Hertz typ
i.e., their longitudinal stiffness~along the intercenter axis!
scales asF1/3, with F being the corresponding load. A
shown by Mindlin@1#, this scaling also holds, for frictiona
balls, for their shear stiffness, provided that the shear l
borne by the contact is much smaller than the friction thre
old. So, one intuitively expects that the velocity of, say, lo
gitudinal soundvL;P1/6.

However, experimental results depart strongly from t
expectation:vL is found to exhibit a much fasterP depen-
dence, which is commonly characterized by ‘‘effective exp
nents’’n5d(ln v)/d(ln P). Values ofn of order roughly1

4 are
often mentioned. Such a behavior is observed for thr
dimensional ~3D! random grain packings, which prese
what we will term ‘‘strong topological disorder’’ but also
more surprisingly, for artificially built regular arrays o
quasimonodisperse balls. This was first shown on a 3D
lattice by Duffy and Mindlin@2#, who found that the faste
dependence withn; 1

4 in the intermediate-pressure rang
tended asymptotically, at highP’s, towards the HertzP1/6

dependence. Recently, Gilles and Coste@3# have investigated
in detail sound propagation in a 2D hexagonal lattice of s
balls. Their experimental results forvL(P), which are quali-
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†Associéau Centre National de la Recherche Scientifique et
Universités Paris VI et VII.
1063-651X/2002/65~2!/021307~14!/$20.00 65 0213
a
n-
re

e
,

d
-

-

s

-

e-

c

el

tatively similar to those of Duffy and Mindlin, have moti
vated the present study.

Various explanations for this behavior for strongly diso
dered packings have been put forward. In particular, G
dard@4# proposed that a14 value ofn might originate from the
existence of conical contacts, while de Gennes@5# suggested
that the presence of heterogeneous shells surrounding
grain bodies might in some cases be relevant. A poss
more natural explanation lies in the pressure dependenc
the number of load bearing contacts in the packing. It h
been at the center of several recent works. In particula
direct numerical study by Makseet al. @6# demonstrates the
correlation between number of contacts and sound velo
in a 3D system.

For regular arrays, such an explanation may at first app
doubtful. However, Roux@7# has studied numerically the 2D
hexagonal close-packed~hcp! structure and found that even
minute dispersion in ball radii leads to a similar effec
Namely, due to purely geometrical constraints, as the p
sure increases, the average number of contacts per baNc
varies from;2.5 at the rigidity threshold to its maximum
value of 6 at highP.

Although such effects seem to be within the reach o
mean-field description, the various attempts in this direct
have up to now failed to account for deviations from t
Hertz power law@8–10#. As already suggested by Maks
et al. @6#, we believe this to result from the central but im
plicit assumption of these models that the local contact
rangement deforms homothetically whenP changes. This
amounts to neglecting the essential effect of local stress
homogeneities: due to the elastic Hertz deformations, t
result in a dispersion of intercenter distances, and henc
the bond strengths. In other words, even in the absence
change in contact number, the change of bond stiffness
duced by a pressure change is nonaffine.

While it is certainly very difficult to improve upon this
approximation in the case of strong topological disorder,
case of a periodic array of weakly disperse balls seems a
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B. VELICKÝ AND C. CAROLI PHYSICAL REVIEW E65 021307
nable to a realistic description. Indeed, in this case, the e
tence of a reference lattice permits to formulate a mean-fi
theory in the spirit of the single center self-consistent coh
ent potential approximation approach@11#, developed al-
ready long ago to describe the electronic properties of
tallic alloys. Such a route was already explored in a serie
papers on depleted elastic networks@12,13#. However, in
these works, the distribution of active contacts was assu
to be known and independent of the external stress, and
self-consistent condition was formulated in terms of a sing
bond approximation, in the spirit of Kirkpatrick’s approac
to percolation problems@14#.

In this paper, we build an effective medium description
a 2D hcp array of Hertz-Mindlin balls, which does accou
for local deformation due to the disorder in ball radii.
contrast with previous theories, our self-consistency con
tion does depend on the global external stress. Clearly
such a system, the higher the external pressure, the sm
the relative disorder. So, our mean field appears as a higP
expansion. It therefore complements the numerical studie
Roux, which deal with the low-P regime where percolation
effects are dominant.

We show that our predictions account quantitatively
the experimental results of Gilles and Coste. Moreover, co
parison with Roux’s results in an overlapping intermedia
pressure range allows us to determine the range of validit
our effective medium approach. We find that it holds down
pressures whereNc has decreased by about 15% of its sa
ration value. From all this, we conclude that the basic phy
cal effect responsible for departures from theP1/6 law is,
rather than the variation of contact number in itself, the d
order induced spatial stress fluctuations.

The paper is organized as follows. In Sec. II we set
basis of our model by writing the dynamical equations fo
set of Hertz-Mindlin contacts under equilibrium force
aligned with the intercenter directions, and solve them for
ideal lattice of perfectly identical balls. In Sec. III, we bui
up our mean-field description, apply it to the hcp lattice, a
obtain from it the equation of state, i.e., the forc
displacement relation from which the effective bulk a
shear moduli are derived. Section IV compares in detail
mean-field predictions with the experimental and numer
results.

II. BASIC MODEL AND DYNAMICAL EQUATIONS

A. Equations of motion

Let us first consider two spherical balls labeledi,j of radii
di , dj made of the same material, of Young modulusE,
Poisson ratios, densityr. The balls at equilibrium are in
Hertz contact@1# under a forcef directed along the inter
center axisij , i.e., normal to the contact circle.

The normal forcef displaces the intercenter distance fro
di j 5

1
2 (di1dj ) to ai j 5di j 2d i j , and

d i j ~ f !5S 9 f 2

4di j* E* 2D 1/3

. ~1!

Due to solid friction, when submitted to a tangential for
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smaller than the friction thresholdmsf , the contact is pinned
and cannot slide. The elastic response of this system to s
additional forcesd f x , d f y in the ~x,y! plane is described, in
the linear approximation, by two stiffness coefficients, giv
by the Hertz-Mindlin expressions, namely@1#, ~i! compres-
sion ~normal! stiffness

ki j 52
d f x

dxi j
5~ 3

2 E* 2di j* f !1/3 ~2!

where

E* 5
E

2~12s2!
, ~di j* !215 1

2 ~di
211dj

21!; ~3!

~ii ! shear~tangential! stiffness

k i j 5hki j , h5
2~12s!

22s
. ~4!

Let us insist here that the fact that the ratioh5k i j /ki j is
a mere material parameter, independent of the values of
equilibrium forces, only holds for the case of a purely norm
equilibrium loading, which we assume to be the case here
the general situation with a finite equilibrium tangential lo
f t , h→h@12( f t /msf )1/3#. In the following, we will restrict
ourselves to situations where all~equilibrium and nonequi-
librium! interball forces are near normal, so that both t
static and dynamic shear responses are described by the
ear shear stiffness@Eq. ~4!#.

Small displacements of the balls can be decomposed
rigid translationsui , uj and rotations aboutOzby anglesf i ,
f j . Denoting byn̂i j , t̂ i j the unit vectors normal and tangen
to the ~ij ! contact withn̂i j directed fromi to j ~see Fig. 1!,
one immediately finds that the force and torque on bai
associated with theij contact read, respectively,

dFi , j5ki j @~ui2uj !•n̂i j #n̂i j 1hki j @~ui2uj !• t̂ i j # t̂ i j

2hki j
1
2 ~djf j1dif i ! t̂ i j , ~5!

FIG. 1. Sketch of the ideal 2D hcp lattice.
7-2
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PRESSURE DEPENDENCE OF THE SOUND VELOCITY . . . PHYSICAL REVIEW E65 021307
dCi , j5hki j

di

2
@~ui j 2ui !• t̂ i j 2

1
2 ~djf j1dif i !#, ~6!

and, in the small displacement limit appropriate to sou
propagation, the equations of motion for a 2D lattice of ba
are

Mi üi5(
$ j %

dFi , j , Mi5
prdi

3

6
, ~7!

I if̈ i5(
$ j %

dCi , j , I i5
di

2Mi

10
, ~8!

where the sums are restricted to nearest neighbors in d
contact withi.

B. Ideal hcp lattice

We now consider the ideal case of a 2D hcp lattice
balls of equal diameterd prepared so that, at equilibrium, th
interball forces, of magnitudef, are directed along the nor
mals to the contactsn̂i ~see Fig. 1!. Such a ‘‘hydrostatic’’
configuration can be realized by applying a force per u
lengthP5 f)/d on a hexagonal container with walls alon
the dense ball rows, as realized in@3#. The unit cell is defined
by the two vectorsa1,25dn̂1,2, the ball centers byRmn
5ma11na2 .

One then obtains from Eqs.~5!–~8!, for the vibrational
modes of this system,

umn5u expi@q•Rmn2vt#, fmn5f expi@~q•Rmn2vt !#,
~9!

Mv2u52k(
p51

3

@12Cp~q!#@~u•n̂p!n̂p1~hu• t̂p! t̂p#

1 ihkdf (
p51

3

Sp~q! t̂p , ~10!

Iv2f52 ihkd(
p51

3

Sp~q!~u• t̂p!1hk
d2

2
f (

p51

3

@11Cp~q!#,

~11!

wherek is the normal stiffness common to all contacts an

Sp~q!5sin@d~q•n̂p!#, Cp~q!5cos@d~q•n̂p!#, ~12!

and use has been made of relations such as(p51
6 n̂p50.

The exact spectrum in the full Brillouin zone, comput
for q along two directions of high symmetry, is shown o
Fig. 2. It can be inferred from these results that in this clo
packed lattice the anisotropy of the spectrum is small.

In the elastic continuum, long wavelength limitqd!1,
decomposing the translation amplitude into its longitudi
and transverse components:u5uiq̂1u'( ẑ3q̂), one finds
that the vibration spectrum, which is isotropic due to t
hexagonal symmetry of the lattice, is composed of th
branches.
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~i! Pure longitudinal acoustic modes of frequencyvT
5vLq, where the longitudinal sound velocityvL is given by

vL
25

9

8 S 11
h

3 D k

M
d2. ~13!

~ii ! Two branches of mixed modes containing both
transverse translational and a rotational component. On
them is acoustic:v5vTq, where the transverse sound velo
ity reads

vT
25

3

8
~11h!

k

M
d2. ~14!

The second, which corresponds to pure rotation in theq50
limit, is an optical branch defined by

vR
2530h

k

M
~12 1

20 q2d2!. ~15!

That is, as already shown by Schwartz, Johnson, and F
@15#, the specificity of the vibration spectra of granular sy
tems in frictional Hertz contact, as compared with atom
systems, lies in the additional degree of freedom associ
with ball rotation. This remains coupled, in the long wav
length limit, with shear deformation, leading to a contrib
tion (23hkd2/4M ) to vT

2.
Also shown in Fig. 2 are the long wavelength dispersi

curves. They can be seen to provide a good approxima
for the exact spectrum in a sizeable fraction of the Brillou
zone.

It is worth recalling at this point that our equations
motion cease to be valid when the frequency approaches
of the lowest acoustic resonance of a ball:v res'vbulk /d,

FIG. 2. Dimensionless dispersion curves for vibrations in
hcp lattice along two principal directions in the Brillouin zon
Units: (k/M )1/2 for frequency, 2p/d for wave vector. Upper panel
frictional balls,nsteel50.84. Lower panel: frictionless balls. Middle
Brillouin zone,GK5

2
3 2p/d, GM5(1/))2p/d.
7-3
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B. VELICKÝ AND C. CAROLI PHYSICAL REVIEW E65 021307
with vbulk being the sound velocity of the material constitu
ing the balls. Indeed, in this situation, elastic deformatio
are no longer localized in a small region of extension of
order of the contact radius, internal deformations beco
important, and the restoring forces can no longer be
scribed simply via the Hertz-Mindlin stiffnesses. Rough
speaking, this means that our expressions for the acou
branches of the spectrum are valid provided thatvL,T
!vbulk . In view of Eqs. ~13!, ~14!, and ~2!, this simply
amounts to (f /Ed2)1/6!1, which is realized under ordinar
experimental conditions@16#. Note that this condition is
equivalent to stating that the radius of the Hertz cont
circle must be much smaller that the ball radius, which
precisely the condition for the Hertz approach to hold.

From planar continuum elasticity applied to a mediu
with hexagonal symmetry, the velocities of sound wav
with propagation and polarization directions in the ba
plane read

vL
25

K1G

r̃
vT

25
c

r̃
, ~16!

wherer̃ is the mass density of the medium,K andG are its
bulk and shear moduli, respectively.

Comparison between these expressions and Eqs.~13! and
~14! enables us to define elastic moduli for our ball lattice—
result that will be of use in the disordered case. They re

K5
)

2

k

d
, G5

~11h!

2
K, ~17!

where r̃ is related to the density of the ball material byr̃
5pr/3).

III. DISORDERED LATTICE

A. Random hcp array of balls under hydrostatic compression

Consider an ensemble of balls whose material parame
are identical, while their diameters vary at random with
continuous or discrete statistical distribution. A diame
valuedQ, with a formal labelQ, has the probability or frac-
tional concentrationcQ and(cQ51.

The mean diameterd of a set ofN@1 such balls may be
obtained by configuration average, which we will denote
^¯&

d5
1

N (
i

di→d[^d&5(
Q

cQdQ. ~18!

We define the random deviations by

D i5di2d, DQ5dQ2d,

~D!50, DRMS
2 [^D2&5( cQ~DQ!2. ~19!

In actual computations, we will use the uniform distributio
with full width W5max$DQ%2min$DQ%, which meansDRMS

5WA12.
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One sample~configuration! of the random hcp array o
balls may be created by randomly distributing the balls in
uncorrelated way over the sites of a reference hcp latt
The number of balls is assumed to be sufficiently large
the thermodynamic limit to be approached. The sample
then random but macroscopically homogeneous. The b
are brought into contact and further compressed by exte
compressive forces applied to the sample boundaries so
the average internal stress is hydrostatic. An easy way
achieving this is to assume a hexagon shaped sample a
apply to all its sides the same macroscopic pressure fo
The pressure force per unit lengthP will be henceforth called
linear pressure. Under this pressure, the size of the com
pressed sample is reduced, while the symmetry of the lat
is preserved on average. It is thus meaningful to introduce
average lattice spacing aas a macroscopic parameter havi
a thermodynamic limit and globally characterizing the st
of the sample.

The pressure and the size of the compressed system
related by themacroscopic equation of statefor the random
lattice under hydrostatic compression. It will be convenie
to introduce it in the form

f 5 f̃ ~a!, f 5Pd/A3, ~20!

where f̃ is the functional dependence in question andf de-
notes theaverage intergrain hydrostatic forceassociated
with the linear pressureP. The effective normal stiffness k˜

and the effective bulk modulusKeff are then given by

k̃~a!52
d f̃~a!

da
, KEFFd52

a2

S da2

dP D 5
)

2
k̃. ~21!

As for thed factor on the left-hand side, cf. Eq.~17!.
While the global characteristicsP anda have thermody-

namic limits, the ball positions and contact forces are sub
to pronounced fluctuations, in particular for small extern
loads. In experiments, this double nature of the disorde
state is manifested by the coexistence of coherent signals
irregular speckles in the acoustic response@3,17#, in numeri-
cal simulations most clearly by the formation of force cha
@7,18#.

Let us first verify that the geometrical disorder can
taken as small, as demanded in Sec. II A. If the relative
ameter spread is small, the equilibrium disordered sys
can be treated, for any external pressure, as a distorted
tice. The balls are slightly displaced, and, in the case
frictional balls, the contact points may be somewhat off t
intercenter lines, which gives rise to non-normal cont
forces. Taking as representative the data of@3#, W&8 mm,
d58 mm for steel balls, we see that the relative dispersion
‘‘bond’’ lengths is of the order of 1023. By geometrical con-
siderations, this corresponds to deviations of the direction
the contact force from the normal also of about 1023 rad.
These figures indicate that the geometrical disorder in
case is small indeed.
7-4
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PRESSURE DEPENDENCE OF THE SOUND VELOCITY . . . PHYSICAL REVIEW E65 021307
Fluctuations in the magnitude of the random cont
forces, by contrast, may be quite large. From Eq.~1!, the
contact force as a function of intercenter distance is given

~22!

As indicated by the underbrace in Eq.~22!, it is consistent to
neglect the randomness ofdi j* . Namely, the fractional fluc-
tuation ofdi j* 'd1 1

2 (D i1D j ) is ;DRMS/d.
On the other hand, the disorder of the last factor in E

~22! is crucial: for the Hertz displacementdi j 2x, the ratio
DRMS/(d2x) may be large or small depending on the deg
of compression of the balls, while both basic conditio
DRMS!d ~small disorder! and d2x!d ~Hertz picture!, re-
main satisfied. We may thus envisage three different regim

Regime Condition

Low pressure DRMS@d2x
Intermediate pressure DRMS'd2x
High pressure DRMS!d2x

In the high-pressure Hertz regime,DRMS!d2x!d, the
disorder appears as a perturbation of a basic homogen
and homogeneously compressed crystal. This natural con
ture has given rise to two simple, but useful approximatio
~see@7#! for the true effective medium.

~i! The averaged lattice approximation~ALA ! replaces
the true sample by an ideal lattice of balls with the diame
d. The constitutive law and the bulk modulus thus read@19#

f̃ ~a!5 2
3 E* d1/2~d2a!1

3/2[F~a!, ~23!

KALA 5E* S 9

16

P

E* dD 1/3

. ~24!

Thus, the bulk modulus naturally obeys the plain Hertz1
3 law,

as is appropriate for a periodic array~see Sec. II!.

~ii ! Theaveraged force approximation~AFA! assumes the
balls to be positioned at any pressure exactly at the lat
sites, while the contact forces are given by Eq.~22!. In this
strictly symmetric geometry, no shear forces between
grains occur, and the effective hydrostatic force between
adjacent sites is obtained by configuration averaging,

f̃ ~a!5^ f i j ~a!&[Fav~a!,

Fav~a!5 (
Q,Q8

cQcQ8FQQ8~a!, ~25!

where we have introduced the notation

FQQ8~x!5 2
3 E* d1/2~dQQ82x!1

3/2. ~25a!
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for a force at a separationx between two balls of the pre
scribed speciesQ, Q8 with dQQ85 1

2 (dQ1dQ8)5d1DQQ8.
Asymptotically,

f̃ ~a!;F~a!S 11
3

8

DRMS
2

~d2a!2D ~26!

and the bulk modulus becomes

KAFA5KALA S 12
1

8

DRMS
2 ~ 4

3 E* 2d21!2/3

P4/3 D . ~27!

These two equations show that the AFA effective contacts
non-Hertzian, and that the pressure dependence of the el
modulus deviates from the simple13 power law.

While the ALA has an arbitrary nature, the AFA seems
be justified for high pressures, when the geometrical disor
is small compared to the compressive displacements, w
the contact forces still continue to exhibit random fluctu
tions. These force fluctuations then appear as being res
sible for the non-Hertzian features of the effective conta
@20#.

At lower, ‘‘intermediate,’’ pressures, according to ou
above classification, all grains are still mutually engag
through their contacts, but the random displacements bec
comparable to the global compressive deformations. T
AFA is then not sufficient, while an approximation takin
these local lattice distortions into account in an averag
manner may be satisfactory. The effective medium appro
mation~EMA! described in the next section is an attempt
this direction.

B. Effective medium approximation

Now, we are ready to build our effective medium appro
mation for the disordered hexagonal array of balls. We
this name, conventional in the context of granular asse
blies, but as sketched already in the Introduction, a m
descriptive name would refer to the mean-field nature of
approximation, or, alternatively, to its ‘‘single-site’’ charac
ter. The universal idea of such approximations is as follo
@11#. We will only consider disordered systems in which
periodic geometrical lattice~2D hcp in our case! is filled by
elementary objects associated with individual sites~balls for
us! and having randomly variable characteristics~radii!. It is
assumed that the macroscopic properties of such random
tems can be obtained, in principle, by configuration aver
ing. The configurationally averaged system is exactly pe
odic again. In the mean-field approximation, one assum
that it can be represented as a periodic array of effec
elementary objects similar in nature to the random eleme
of the real array. The characteristics of these are determ
by the following self-consistent procedure. One of the effe
tive elements is replaced back~substituted! by a true random
one. The new system is locally sampled in a random fash
It is then required that a configuration average of these
cally distorted systems restores the average behavior.
7-5
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B. VELICKÝ AND C. CAROLI PHYSICAL REVIEW E65 021307
condition determines the characteristics of the effective
ments. Once this has been done, the whole task of con
ration averaging is complete.

An effective medium theory along these lines was dev
oped by Feng and co-workers in@12,13# to study depleted
elastic networks on lattices. The basic element in the the
of these authors was a single bond connecting two lat
sites. The bonds were described by their linear stiffnes
whose random distribution was prescribeda priori. The re-
sulting EMA @a single-bond CPA# provided a theory for the
effective linear elasticity of the network, and for its vibr
tional spectrum.

While this bond EMA was a successful theory in its ow
area, we contend that it cannot be used for random H
lattices for two essential reasons.

~i! The elementary object in a granular system is a b
The star of~six for 2D hcp! contacts surrounding the bal
that is, of ‘‘bonds’’ stemming from the center, is statistica
correlated, and the bonds cannot be treated as independ

~ii ! The linear stiffnesses of the contacts are not kno
beforehand. They are indirectly specified by the average
ternal pressure, but their local fluctuations depend on
equilibrium ball positions and cannot be determined indep
dently of the nonlinear static equilibration of the Hertz arr
at a given pressure.
These two points are of a different nature and importan
The second point holds for any granular system, and
believe that it is precisely this that has been the obsta
against developing a satisfactory EMA for the acoustic
sponse of granular materials. It may be said that the g
network should fulfill two contradicting roles at the sam
time, namely, it should constitute the medium for wa
propagation as well as the random scattering field. We
see how this basic problem can be overcome in our ra
specifically constructed case.

1. EMA for frictionless balls

To develop an EMA incorporating these features, we c
sider first the case of nonfrictional Hertz contacts~formally,
h50!. The averaged array is assumed to consist ofeffective
balls whose diameter isa. The principal assumption is tha
the average hydrostatic forcef̃ (a) can be interpreted locally
as a contact force between two effective balls, so thatk̃(a)
52(d/da) f̃ (a) is the stiffness of an effective contact b
tween two such balls. Now, we select one site, ‘‘0,’’ as ce
tral and substitute a ball with diameterdQ for the effective
ball. The differencedQ2a in diameters will give rise to an
elastic deformation of the effective lattice. In other word
the substituted ball acts as an elastic inclusion. On aver
the deformation should cancel. This would define the EM
condition, if only we were able to determine the force b
tween a real and an effective ball. This is not possible
rectly, and we propose to overcome this by considerin
cluster consisting of the central ball and a ‘‘corona’’ of i
nearest neighbors as sketched in Fig. 3. These neigh
have a hybrid nature. In other words, the interface betw
the effective medium and the inclusion passes through
corona balls. All contacts between the corona balls and
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adjacent effective balls are taken as effective ones, assoc
with the forcef̃ . This type of approximation is based on th
mean-field reasoning: the fluctuations of the remote part
the lattice should not have a significant effect on the cen
site.

Inside the cluster, the corona balls might appear as ‘‘tru
randomly chosen balls, so that the contact forces would b
the formFQQ8 as given by Eq.~25a!. A straightforward pro-
cedure involving averaging over the individually equilibrat
positions of such randomly composed clusters of seven b
while conceivable, would be disproportionately clumsy.

We prefer to introduce a model of thecorona, which,
while simple and transparent, captures the core feature
the problem.

~1! The contact forces between the central ball and
corona balls are averaged over the corona configuration

f 0i~x!→FQ~x![(
Q8

cQ8FQQ8~x!, i 5146. ~28!

These forces incorporate in full the symmetric, radial flu
tuations caused by the randomness of the central ball, w
all angular correlations are averaged over and the forces h
full hexagonal symmetry.

~2! The contact forces between the touching corona b
are assumed to be given by the effective force lawf̃ (x).

The displacements of the corona balls are then also sym
ric. This restores the basic picture of a symmetric inclus
in the effective lattice. The central ball remains at its si
while the corona breathes around it symmetrically in acc
dance with the central site occupancy and transfers this t
equilibrium symmetric distortion of the surrounding effectiv
lattice.

Returning to Fig. 3, we see that the cluster is surroun
by 12 effective balls forming a hexagon. They are of tw
kinds: six occupy the corners~‘‘on-top’’ positions with re-
spect to the corona balls! and another six sit along the edge
~‘‘bridge’’ positions!. The displacement field around the ‘‘1
ligand is sketched in Fig. 4. The scalaru is the radial dis-
placement common to all corona balls,ua andub correspond
to the on-top and bridge neighbors, respectively. The arro

FIG. 3. Graphical representation of the EMA averaging proce
On the left, a cluster~central ball 0 surrounded by its corona, ba
1–6! embedded in the effective medium. Configuration averag
^¯& restores the effective medium on the right.
7-6
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PRESSURE DEPENDENCE OF THE SOUND VELOCITY . . . PHYSICAL REVIEW E65 021307
indicate the directions of the displacements, whose ma
tude varies with theQ label of the central ball, and should b
labeleduQ, u1

Q ,... .
Ball 1 is acted upon by contact forces from all its neig

bors. The force coming from the central ball is random@Eq.
~28!#,

f015FQ~a1uQ!n̂1 . ~29!

In the regime of small displacements~; high pressures!, we
may expand

f015@FQ~a!2KQ~a!uQ#n̂1 , KQ~x!52
d

dx
FQ~x!.

~30!

The remaining five forces are given by the effective inter
tion f̃ . They are of three types. In the regime of small d
placements, we obtain@cf. Eq. ~5!#

fa15 f̃ ~a!n̂42 k̃~a!~uQ2ua
Q!n̂4 ,

fb15 f̃ ~a!n̂52 k̃~a!F H uQn̂12ub
Q 1

)
~ n̂11n̂2!J •n̂2G n̂2 ,

f21, . . . 5 f̃ ~a!n̂32 k̃~a!uQn̂3 . ~31!

The forces depend on the three displacementsuQ, ua
Q , ub

Q .
In the linear elasticity regime corresponding to our assum
tion of small displacements, a simple universal relation ex
between these three displacements,

u05au, ub5bu , ~32!

where a and b are geometrical parameters independent
the magnitude ofu. They can be determined for a linea
elastic array of nonfrictional balls once for ever, although n
in a closed analytic form. Details of the calculation of bo
parameters are in the Appendix. The resulting values are

a50.585 405

b50.232 971

FIG. 4. Displacements of the neighbors of the cluster cen
ball 0. Corona balls: 1, 2, 6. Second neighbors: effective balls in
on-top ~a! and bridge~b andb8! positions.
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Now, we require thatthe total equilibrium force on ball 1
vanishes, and subtract from this condition the equilibrium
condition for the effective lattice

f011f611fb11fa11fb811f2150,

f̃ ~a!$n̂11n̂21n̂31n̂41n̂51n̂6%50. ~33!

Only the component parallel to the 01 connecting line
nontrivial. With the help of Eq.~31! it reduces to a single
equation for a single unknown, the corona radial displa
ment, with the solution

uQ5
FQ~a!2 f̃ ~a!

KQ~a!1J k̃~a!
, ~34!

where

J5
5

2
2a2b

)

2
~35!

is again a geometrical factor. The equation has a simple
terpretation. For a givenQ, the difference between the forc
exerted by the inclusion and the average force gives rise
radial displacement. Its magnitude is related to the force
an additively renormalized stiffnessreflecting the fact that
the corona is supported by the rest of the~effective! lattice.
In the mean-field context, this renormalization is alocal field
correction, and the parameterJ measures its dimensionles
strength.

Now, we may impose the self-consistency condition,
quiring that the average displacement be zero,

^uQ&5(
Q

cQ
FQ2 f̃

KQ1J k̃
50, ~36!

where the argument of all functions isa. This single implicit
equation links the corona radial displacement with the
known f̃ . It can be rearranged into a suitable explicit form
First, introduce

Fav5^FQ&5(
Q

cQFQ,

1

K*
5(

Q
cQ

1

KQ1J k̃
. ~37!

Fav is easily recognized as the averaged force of the A
@Eq. ~25!# K* is an averaged radial stiffness of the latti
surrounding a single ball inclusion. WritingFQ2 f̃ 5(FQ

2Fav)1(Fav2 f̃ ) and using Eq.~37!, we bring the EMA
condition ~36! to the form

f̃ 5Fav1K* (
Q

cQS 1

KQ1J k̃
2

1

K* D ~FQ2Fav!. ~38!

l
e

7-7



te
h
n
n

m
th

or
th

d

nc
d

e
e
e
fo

th

ro
ur
n
o

ne
io

on

t
is
he
an
u
en

f

er
el-
y,

for
the
ed

ro-

are
tual

the
ss
e

tep

are
ain
ue
the
l is
ing
the

he

i-

ss

is-

B. VELICKÝ AND C. CAROLI PHYSICAL REVIEW E65 021307
The average hydrostatic forcef̃ for a given lattice spacing is
seen to contain two contributions. First, the nonselfconsis
averaged contact force, and, second, a term having the c
acteristic structure of a correlator involving self-consiste
fluctuations of two random variables. This form is know
from CPA-like theories. We have to refer to Ref.@11# for the
original CPA for electrons in alloys, but here we contrast~36!
with the bond CPA of Refs.@12,13#. Their CPA for an effec-
tive stiffness of a depleted elastic network had the sa
overall form, but it was an algebraic equation, because
stiffnesses of the bonds were taken as known and the f
whose derivative determines the stiffness did not enter
equations. In our case, we have to consider the forces an
stiffnesses simultaneously, and the second term of Eq.~38! is
responsible for the peculiar character of the self-consiste
It is not the unknownf̃ itself that appears on its right-han
side, but its derivativek̃(a)52(d/da) f̃ (a), so that Eq.~38!
has the form

f̃ ~a!5Fav~a!1F XJUa,
d

da
f̃ ~a! C, ~39!

where F is a complicated but well-defined function. Th
EMA equation is thus a first-order differential equation d
termining f̃ as a function ofa. In other words, we have her
a case where self-consistency cannot be written directly
an isolated value of the control parametera, but involves
intrinsically the whole functional dependencef̃ (a). This is a
physical rather than a formal feature of the theory due to
nonlinearity of the Hertz forces and stiffnesses@see Eq.~2!#.
The notion of an incremental buildup of stress was int
duced in@2# for general Hertz-Mindlin granular systems. O
system is special in that it remains elastic. On the other ha
local distortions in the random ball arrangements depend
the global evolution of the system and cannot be obtai
but via an incremental process, of which the EMA equat
~39! is the mean-field representation@21#.

To select the physically relevant solution of Eq.~39!, we
rely upon the high-pressure asymptotic boundary conditi

f̃ ~a!;Fav~a! for DRMN!d2a ~!d!. ~40!

It can be explicitly verified from Eq.~38! that the contact of
f̃ with Fav stipulated by Eq.~40! is of second order, so tha
the boundary condition is formally justified. Physically, th
condition means that the EMA coincides with the AFA in t
asymptotic limit of high pressures, but extends the me
field description of the system to an intermediate-press
region. We may also say that our EMA is a self-consist
resummation of the high-pressure perturbation expansion
the equation of statef̃ (a).

The solution of the EMA equation~39! is obtained with-
out difficulty by numerical iteration starting fromf̃ (0)(a)
5Fav(a).
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2. EMA for frictional balls

The case of frictional balls is very important for a prop
comparison with existing experimental data. A formal dev
opment of the EMA for frictional balls can proceed quickl
because the steps are almost identical with those made
the nonfrictional case. It is necessary, however, to extend
description of the effective medium. As before, it is assum
to be composed of effective balls with diametera, interacting
through effective contacts. In addition to the average hyd
static forcef̃ and the normal stiffnessk̃52(d/da) f̃ (a), we
have to postulate also a local shear~tangential! stiffnessk̃ as
a third basic characteristic of the effective contact. Fork̃, we
formulate our basic conjecture

k̃5h k̃. ~41!

In words, the effective shear and compressive stiffnesses
related in the same manner as the two stiffnesses for ac
Hertz-Mindlin contacts; in Eq.~4!, h is introduced as their
ratio and expressed in terms of the bulk Poisson ratios
alone. This independence ofh on the local geometry and
forces supports the above ansatz. It is justified within
AFA, that is, in an asymptotic sense. We will further discu
this intuitively appealing conjecture below, but first deriv
the EMA equations following the preceding paragraph s
by step.

The central ball inclusion and its symmetrized corona
introduced without changes and both Figs. 3 and 4 rem
valid. Due to the symmetry of the cluster, there is no torq
acting on either the central or the corona balls and only
force equilibrium has to be considered. The central bal
equilibrated automatically, and we inspect the forces act
on the corona ball 1, linearized again with respect to
small displacements. The full expression~5! must be used
now. The relative displacements remain radial for all t
neighbors of ball 1, except for theb andb8 ones~see Fig. 4!.
For b’s, the contact force has a shear component.

fb15 f̃ ~a!n̂52 k̃~a!F H uQn̂12ub
Q 1

)
~ n̂11n̂2!J •n̂2G n̂22k̃~a!

3F H uQn̂12ub
Q 1

)
~ n̂11n̂2!J • t̂2G t̂2 ~42!

and similarly forb8. Finally, the displacementsuQ, ua
Q , ub

Q

obey, in the linear elasticity regime, universal relations sim
lar to Eq.~32!,

ua5a~h!u, ub5b~h!u, ~43!

where thea and b parameters depend now on the stiffne
ratio h, as indicated.

Introducing Eqs.~41!–~43! into the equilibrium condition
~33!, which is fully general, we obtain the corona radial d
placement as

uQ5
FQ~a!2 f̃ ~a!

KQ~a!1Jhk̃~a!
, ~44!
7-8



h

l

s.

na

ric
it
b

e
A
i

le
a
ur
wo
.
he

d

d

te

k

a
so

an-
ion
lin
de-
sive

s,
e-

e-
the
p-

be
on-
by

uld
uli
r.

x-

der
f a
the

ity
q.

ngs

igh
m-

ces
of
in

e
the

ff-

f
al
r.

PRESSURE DEPENDENCE OF THE SOUND VELOCITY . . . PHYSICAL REVIEW E65 021307
in complete analogy with the frictionless case, Eq.~34!. The
only change is anh-dependent geometrical factor, whic
reads now

Jh5
5

2
2a~h!2b~h!

)

2
1hF3

2
2b~h!

)

2 G . ~45!

The EMA condition^uQ&50, Eq. ~36!, has a universa
character, and withuQ given by Eq.~44!, it can be brought
successively to various explicit forms following strictly Eq
~36!–~39!, with J of Eq. ~35! replaced everywhere byJh as
given by Eq.~45!. For convenience, we present here the fi
form of the EMA,

f̃ ~a!5Fav~a!1F XJhUa,
d

da
f̃ ~a! C ~46!

The corresponding boundary condition~40! is h indepen-
dent. The two complementary cases, frictional and nonf
tional, are thus given by the same differential equation w
the same boundary condition. They are only distinguished
the value of theJh parameter, which corresponds tohÞ0
and h50, respectively. In other words, the difference b
tween the two physical situations is reflected in the EM
through the strength of the local field correction appearing
the renormalized contact stiffness.

C. Macroscopic properties in the EMA

To complete the EMA analysis of our granular system,
us now derive the expressions for the sound velocities. M
roscopically, the averaged system is a periodic hcp struct
so that it is acoustically isotropic and there exist just t
sound velocitiesvL and vT , as in the ideal lattice of Sec
II B. There, we proceeded from the full dispersion law in t
Brillouin zone to the long wavelength limit@Eqs. ~13! and
~14!#, then to the elastic moduli~17! on the basis of the
macroscopic~continuum! relations~16!.

For the disordered system, we shall go in the reverse
rection. The EMA yields directly the equation of statef̃ (a)
and the effective compressive stiffnessk̃(a). The equation of
state is a monotonic function ofa and thus can be inverte
into ã( f ). Using Eq. ~20!, we obtain finally the average
lattice spacing as a function of the linear pressureP and any
function of a, such as the bulk modulus, can be conver
into a function of the pressure.

The bulk modulus is obtained from the stiffnessk̃ using
Eq. ~21!. It should be stressed that Eqs.~17! and~21! have an
identical form; in fact, Eq.~17! as far as it concerns the bul
modulus is but a special case of Eq.~21! for zero disorder.
As concerns the shear modulus, since our method only
lows for treating the effect of hydrostatic stresses, we re
to an ansatz, i.e., we propose to extend relation~17! for G to
the disordered case. We then get

Keff5
)

2

k̃

d’
, Geff5

~11h!

2
Keff . ~47!
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While the first relation is exact, we should discuss the me
ing of the second one. It turns out that the equivalent relat
~17! for the ideal array is a direct consequence of the Mind
ratio ~6! between near-normal stiffnesses and does not
pend on the specific value or character of the compres
stiffness. Thus, the second of Eqs.~47! is in fact equivalent
to our conjecture~41! about the ratio of effective stiffnesse
k̃5h k̃. Once the effective moduli are known, the sound v
locities become

vL
25

Keff1Geff

r̃
, vT

25
Geff

r̃
. ~48!

Equations~47! then predict for the velocity ratio that

vL
2

vT
2 5

31h

11h
. ~49!

This is a very strong prediction, according to which the v
locity ratio should depend neither on the pressure nor on
disorder level, being fully determined by the material pro
erties of the grains. While Eq.~41! is not susceptible of di-
rect verification, the predicted sound velocity ratio can
tested for a wide range of systems. Note that a similar c
jecture concerning this ratio was formulated earlier
Schwartz, Johnson, and Feng@15#.

In order to avoid resorting to such a guess, one wo
have to develop an extended EMA yielding both mod
Keff ,Geff directly by considering also a macroscopic shea

IV. DISCUSSION

We first confront our mean-field predictions with the e
perimental data obtained by Gilles and Coste@3#, on an hcp
lattice of steel balls confined by a hexagonal frame un
hydrostatic loading. They measured the time of flight o
low frequency sound pulse between two opposite sides of
frame. From this we obtain the longitudinal sound veloc
vL( f ), wheref is the average equilibrium contact force, E
~20!.

The experimental data show that at the highest loadi
used,vL approaches closely theP1/6 Hertz behavior. This
confirms that, in this regime, the applied pressure is h
enough for disorder effects to be weak, and for the co
pressed lattice to be close to the ideal hcp one.

We, therefore, focus first on the data for the largest for
used in the experiments. For example, an external force
;990 N applied on each side of a hexagon with 31 balls
contact with each side corresponds tof 518.446 N. Taking
for steelE59.2031010Pa, s50.276,r57840 kg m23, ball
diametersd58 mm, we get from Eqs.~2!, ~3!, and~13! vL
5791 m sec21, to be compared with the experimental valu
of 778 m sec21. The agreement is seen to be excellent, to
precision of the numerical input.

Note that the contribution of the tangential contact sti
ness is non-negligible: with the above value ofs, the Mind-
lin coefficienth50.84. Neglecting the frictional character o
the contacts (h50) leads to underestimating the longitudin
velocity by '11%, well out of the experimental error ba
7-9
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B. VELICKÝ AND C. CAROLI PHYSICAL REVIEW E65 021307
For the transverse velocity, the two values would differ
'35%, but no experimental data are available. These dif
ences in velocities are clearly reflected in the different slo
of the dispersion curves for the frictional and nonfriction
cases in Fig. 2.

With the values ofvL at hand, we may return to the dis
cussion at the end of Sec. II B and check first the validity
the Hertz approach. The bulk sound velocities for the ab
material parameters of steel arevL,bulk55825 m sec21,
vT,bulk53252 m sec21 and we may conclude that the cond
tion vL,T!vL,T,bulk is obeyed. To verify the validity of the
continuum limit, we have to invoke the ground frequency
the pulses used in the experiments,v52p36500 Hz. This
yields q(2p/d)21'0.066, much less than 1 indeed. E
pressed in terms of wavelengths,l'0.122 m;15d. These
estimates made for one pressure may be taken as repres
tive for the whole experimental pressure range, as the exp
mental velocities vary between 500 and 800 m sec21.

In order to analyze the pressure dependence, we de
from the vL data the effective normal stiffnessk̃ with the
help of Eqs.~49! and~48!, assuming frictional contacts with
h50.84. It is plotted on Fig. 5. It is clearly seen that t
high-pressure data fit the straight line corresponding to
ideal lattice. Asf decreases, the logarithmic slope increas
coming close to the popularn' 1

4 value. However, no sharp
crossover is identifiable, the transition being complet
smooth.

We then solve the mean-field equation numerically.
parameters are known, except for the width of the distri
tion of ball diameters. Diameter scatter is only qualified,
the experiment, through a tolerance of64 mm. We assume a
uniform distribution whose widthW is our single fitting pa-
rameter. We find that the best fit is obtained forW
52.04mm, completely compatible with the tolerance figur
The fit itself is seen to be very good in the whole experim
tal range. The EMA is shown both for frictional and nonfri
tional balls. The results are only weakly sensitive to t
value ofh, at striking variance with the sound velocity itse
For the latter quantity, however, theh dependence enter
primarily through theGeff /Keff ratio.

The experimentalf range is limited, on the low force side

FIG. 5. Square root of effective compressive stiffness vs eff
tive contact force. Squares: experiment~Ref. @3#!. Thick line: EMA
for frictional balls. Dashed line: EMA for frictionless balls. Thi
line: ALA ~ideal Hertz dependence!.
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to f .2 N. Furthermore, no direct measurement of the eq
tion of state f̃ (a) is available yet. It is, therefore, of grea
interest to complement the above comparison with a c
frontation between mean-field predictions and the simu
tions performed by Roux@7# on the same system for friction
less balls with a uniform random distribution of diamete
Applied forces span the whole range from almost zero up
the upper experimental limit. The comparison for the eq
tion of state is shown in Fig. 6, which is drawn in the dime
sionless representation used in Ref.@7#,

a* 5
d1 1

2 W2a

W
, f * 5

f
2
3 E* d1/2W3/2

.

In these units, the exact equation of statef * (a* ) is a univer-
sal function@7# if approximation~22! is used. It is easy to
verify on Eq.~38! that the EMA has the same property.

Clearly,a* >0. Fora* 50, the balls barely start touching
a0* 50.343 is the so-called rigidity threshold, below whic
the disordered lattice cannot sustain compressiona* >1 is

-

FIG. 6. Effective force vs displacement in dimensionless un
~see text! for frictionless balls.a0* corresponds to the rigidity
threshold. Dots: numerical results. Dash-dotted lines: power
approximants of numerical results~Ref. @7#!.

FIG. 7. Effective force vs displacement in the ‘‘Hertz’’ represe
tation. Data and symbols as in Fig. 6.
7-10
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PRESSURE DEPENDENCE OF THE SOUND VELOCITY . . . PHYSICAL REVIEW E65 021307
the region where all neighbors are already in contact,
a* @1 is the high-pressure limit. In a narrow range above
rigidity threshold, a quasi-Hertz regime is found followed,
the intermediate force range, by a steeper variation.
mean-field result shown here, also calculated for frictionl
balls, appears to agree with the numerical data for (a*
2a0* )*0.3. Also shown are the curves corresponding to
ALA and to the AFA. They frame the exact and the EM
results from below and from above, respectively. For h
pressures, all plots merge. We replot the same data in F
using the linear scale for the lattice spacing and the2

3 power
scale for the forces, so that the natural range of various
gimes can be better assessed. In particular, note the str
improvement of EMA over the AFA for intermediate pre
sures.

In Fig. 8 we return to the experimentally more releva
stiffness-force dependence and plot in dimensionless f
the mean-field and the ALA curves, the data from Rou
numerical simulations and their power law approximan
and also the experimental data of Gilles and Coste. Th
data are scaled usingW52.04mm and the force unit
2
3 E* d1/2W3/2519.89 N. The overall agreement is truly sat
factory, which is all the more remarkable that, while expe
ments and mean field are concerned with frictional balls,
simulations relate to the frictionless case. This is to be
lated with our previous observation that in the hcp latt
studied here, the normal stiffness is only weakly sensitive
shear interball forces. Such might not be the case for o
ball arrays.

As is well known, since mean-field theories are not s
tematic expansions in powers of a small parameter, they
not allow for a precise direct assessment of their range
validity. From this discussion, we can state empirically th
the validity of our effective medium approximation is limite
to dimensionless forcesf * *0.08. This we confirm by calcu
lating, within the mean-field approximation itself, the rel
tive force fluctuationsD f * / f * 5D f̃ / f̃ , andDFav/Fav, where

~D f !25(
Q

cQ@FQ~a!2KQuQ2 f̃ ~a!#2. ~50!

FIG. 8. Square root of effective compressive stiffness vs eff
tive contact force~dimensionless units!.
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The plot of Fig. 9 shows that the relative fluctuatio
decrease rapidly with increasing displacement, i.e., press
the above mentioned empirical limit corresponding to t
reasonable valueD f * / f * .0.6. The reduction of the loca
stress~force! fluctuations due to the self-consistent local d
placements is reflected in the relative magnitude of the E
and AFA fluctuations. The frictionless balls appear to adj
their positions more effectively, as could be expected.

Finally, we have estimated the average fraction of act
contacts per ballNc in our effective lattice in the following
way. We define it to be the average number of neighbors w
an intercenter distance smaller than the sum of the co
sponding radii.

Nc5 (
Q,Q8

cQcQ8qS dQ1dQ8
2

2a2uQD . ~51!

Note that this expression does not derive systematically fr
the mean-field formalism, in which the notion of conta
number does not enter explicitly. It should therefore be c
sidered as indicative only.Nc is plotted on Fig. 10 togethe
with the values calculated by Roux. Expression~51! is seen
to systematically underestimateNc . It appears that the valid

-
FIG. 9. Relative fluctuation of local contact force vs dimensio

less displacement. Full line: EMA for frictional balls. Thick dash
line: EMA for frictionless balls. Dotted line: AFA.

FIG. 10. Active contact fraction vs dimensionless displaceme
Full line: EMA for frictional balls. Thick dashed line: EMA for
frictionless balls. Dots: numerical simulation@7#.
7-11
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ity of the mean field extends down toNc;85%. However, it
is important to point out that the pressure range where
sound velocity departs from the Hertz behavior extends w
into the pressure range where the contact fraction has alr
saturated to 1. This corroborates strongly the idea that
not the connectivity itself which is responsible for the no
Hertz behavior, but the presence of disorder induced st
fluctuations. This is shown in Fig. 11, where we plot togeth
the EMA results forNc ,D f * / f * and the ratiok̃/kALA . This
latter quantity is a direct measure of the deviations of
effective stiffness from the ideal Hertz law. No sharp chan
of regime occurs at saturation ofNc , the non-Hertz behavio
and stress fluctuations appear to extend to higher press
and gradually tend to zero together.

V. CONCLUSION

On the basis of the above discussion, we are there
able to conclude that our mean-field theory provides quit
satisfactory description of the pressure dependence of
bulk mechanical properties, and hence of the sound velo
in an array of frictional balls in the high-pressure range. T
corresponds to the regime in which the ball network
strongly overdetermined, that is, where connectivity is clo
to its saturation value.

We believe that this agreement, which permits to acco
for the non-Hertz behavior down to then' 1

4 range, is due to
the fact that this theory does capture, though in an appr
mate manner, the existence of disorder induced stress
tuations, and that these are self-consistently related with
global mechanical state of the system. In other words,
true disorder strength in the problem is not intrinsically giv
by the dispersion of unstressed ball diameters, but de
mined from thistogether withthe elastic deformation field.

We have based our single-site description upon the s
plest possible approximation, which amounts to a spher
averaging of local lattice distortions. That this is sufficient
produce a satisfactory theory must certainly be attributed
the high connectivity of the hcp structure. It should for th

FIG. 11. The relative departurek* /kALA* of the EMA effective
normal stiffness from ideal Hertz and the EMA force fluctuati
D f * / f * exhibit no sharp change at the pointf * .0.3, where the
active contact fractionNc saturates to 1.
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reason be applicable as well to a 3D lattice such as the
one. This would be an additional check of the EMA becau
of the different topology of the 3D lattice, and it would a
last provide a theoretical counterpart to the pioneering
periments of Ref.@2#.

Systematic improvement upon this approximation is p
sible. This should be based on extending the basic build
block from our~central ball! 1 ~average bond star! to a full
cluster made of the central ball and of its six neighbors. S
an extension, although obviously heavy, would have
merit of explicitly allowing for local asymmetric configura
tions, which we have ignored here. It would replace the c
jecture ~41! by a direct treatment of the shear interactio
between the balls, permitting hence to study macrosco
shears in the same manner. It would also be a first step
wards taking into account spatial stress correlations, wh
are completely overlooked in the present approach.

In view of this last remark, the good agreement obtain
here with sound velocity data calls for a physical comme
Coherent sound measures a mechanical response on the
of the corresponding effective wavelength which, in the lo
frequency regime of the Gilles-Coste experiments, is at le
of the order of ten ball diameters, as discussed in Sec. IV
is now well documented@7,8,22# that the correlation length
of the stress network in granular packings is, at most, of
order of a fewd. It is therefore to be expected that mean-fie
theories, though by nature unable to capture long range
relations, are well adapted to describe large scale proper
That is, when focusing on large scale mechanical respon
the pertinent notion is that of a global fluctuating stress n
work. The complementary notion of stress chains, which e
phasizes the long range part of correlations, is certainly m
relevant to the question of acoustic scattering which beco
essential at higher frequencies.

Obviously, an important pending question is concern
with the possibility of extending the mean-field approach
the more important case of topologically disordered rand
grain packings. Such a step, however desirable it might b
by no means straightforward, as can be inferred from the,
insuperable, difficulties that have been met when trying
extend the theories of electronic and vibrational properties
random substitutional alloys to amorphous materials. Th
can be assigned to the absence of a natural reference
figuration possessing long range order. Up to now, the o
existing theoretical frame for amorphous solids is a str
tureless, homogeneous effective medium. This wo
amount in the present problem to treating the effective m
dium in the continuum limit, which is clearly inadequate
account for stress fluctuation effects. In this perspective,
merical studies appear essential as a basis for trying to b
up the needed original theoretical concepts.

However, we believe that the qualitative idea that emer
from this work, namely, that it is the disorder induced stre
fluctuations that are responsible for the pressure depend
of the sound velocity in granular packings, will carry over,
well, to topologically disordered systems.
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APPENDIX: CALCULATION OF a, b

We want to calculate here the expression of the coe
cientsa, b defined in Sec. III. For this purpose, we need
solve the following problem. Consider an ideal hcp lattic
with interball distance at equilibriumd, in which we single
out a central site~0!. Apply to the six ballsi 51,...,6 of the
corona of its nearest neighbors excess forces directed a
the (0i ) bondsFi5Fn̂i ~see Fig. 4!. Call ui5ui n̂i the result-
ing displacement of nearest neighbori. Then, by definition,
a5uia /ui , where uia is the displacement of the secon
neighbor (ia) along then̂i direction; b5uib /ui , with uib
being the displacement of the next nearest neighbor along
direction of (1/))n̂i1n̂i 11 .

In order to avoid excessive algebraic heaviness, and
view of the fact that numerical studies lead us to conclude
the very weak sensitivity of the mean-field results to mod
ate variations ofa, b, we limit ourselves to the simple cas
of vanishing Mindlin shear stiffness,h50.

In this case rotations become irrelevant and, in the lin
response regime, the force on a ball is related to the displ
ments of its neighbors by

Fi5(
$ j %

Di j uj ~A1!

so that, inverting in Fourier space,

ui5(
k

eiq•RiD~q!F~q! ~A2!

with

D~q!5D21~q!. ~A3!

From Eq.~9!, D(q) is a 232 matrix acting in~x,y! space,
defined by

D~q!5(
i ,$ j %

eiq•~Ri2Rj !Di j 52k(
p51

3

@12cos~dq•n̂p!#n̂pn̂p .

~A4!

The applied forces are defined by

Fi5F@ n̂1~d i12d i4!1n̂2~d i32d i6!1n̂3~d i52d i2!#,
~A5!
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where the unit vectorsn̂p and the sitesi are labeled accord
ing to Fig. 1.

Then

F~q!5
f

N (
p51

3

~22i !n̂p sin~dq•n̂p!, ~A6!

N being the number of sites in the lattice.
Taking advantage of the fact that, by symmetry,n̂1•(u1

2u4)5n̂2•(u32u6)5n̂3•(u52u2), one gets

u15
n̂1•~u12u4!

2
5

f

3N (
q

(
p,r 51

3

n̂pD~q!•n̂r

3$cos@dq•~ n̂p2n̂r !#2cos@dq•~ n̂p1n̂r !#%. ~A7!

Analogously, the displacementu1a of the second neighbo
alongOx,

u1a5
f

3N (
q

(
p,r 51

3

n̂p•D~q!•n̂r$cos@dq•~2n̂p2n̂r !#

2cos@dq•~2n̂p1n̂r !#%. ~A8!

From Eqs.~3! and ~4!

D~q!5det@D~q!#5 (
p51

3

GpGp11 ~A9!

with

Gp512cos~dq•n̂p!, Gp13[Gp . ~A10!

Finally, one obtains, fora5u1a /u1 ,

a5

(
q

D21~q! (
p51

3

Gp~(p11
~2! 2(p12

~2! !~(p11
~1! 2(p12

~1! !

(
q

D21~q! (
p51

3

Gp~(p11
~1! 2(p12

~1! !2

,

~A11!

where we have set

(p
~n!5sin~ndq•n̂p!, Tp5sin~dq• t̂p!. ~A12!

A completely analogous calculation involving the displac
mentu1b of the second nearest neighbor yields
b5

(
q

2

)
D21~q! (

p51

3

GpS Tp2
Tp111Tp12

2 D ~(p11
~1! 2(p1 i

~2! !

(
q

D21~q! (
p51

3

Gp(p11
~1! 2(p12

~1! )2

. ~A13!

Performing numerically theq integrations over the Brillouin zone we obtain

a50.585 405, b50.232 971. ~A14!
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