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Pressure dependence of the sound velocity in a two-dimensional lattice of Hertz-Mindlin balls:
Mean-field description

B. Velicky* and C. Caroli
Groupe de Physique des Solides, 2 place Jussieu, 75251 Paris Cedex 05,'France
(Received 25 July 2001; published 25 January 2002

We study the dependence on the external preduriethe velocitiesy | 1 of long wavelength sound waves
in a confined two-dimensional hexagonal close-packed lattice of 3D elastic frictional balls interacting via
one-sided Hertz-Mindlin contact forces, whose diameters exhibit mild dispersion. The presence of an under-
lying long range order enables us to build an effective medium description, which incorporates the radial
fluctuations of the contact forces acting on a single site. Due to the nonlinearity of Hertz elasticity, self-
consistency results in a highly nonlinear differential equation for the “equation of state” linking the effective
stiffness of the array with the applied pressure, from which sound velocities are then obtained. The results are
in excellent agreement with existing experimental results and simulations in the high- and intermediate-
pressure regimes. It emerges from the analysis that the departupéR) from the idealP/® Hertz behavior
must be attributed primarily to the fluctuations of the stress field, rather than to the pressure dependence of the
number of contacts.
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[. INTRODUCTION tatively similar to those of Duffy and Mindlin, have moti-
vated the present study.

Sound propagation in a dry confined granular medium Various explanations for this behavior for strongly disor-
still is, to a large extent, an open question. In particular, dered packings have been put forward. In particular, God-
long-standing puzzle is concerned with explaining the dependard[4] proposed that a value of» might originate from the
dence of sound velocities on the externally applied pressur@Xistence of conical contacts, while de Genfissuggested
P. that the presence of heterogeneous shells surrounding the

The load bearing intergrain contacts, which ensure th@rain bodies might in some cases be relevant. A possibly
mechanical stability of the packing, are of the Hertz type,MOre natural explananon_lles in the pressure dep_endence of
i.e., their longitudinal stiffnesgalong the intercenter axis the number of load bearing contacts in the packlng. It has
scales asF3, with F being the corresponding load. As been at the center of several recent works. In particular, a
shown by Mindlin[1], this scaling also holds, for frictional direct ngmerlcal study by Makset al. [6] demonstrates the .
balls, for their shear stifiness, provided that the shear loa orrelation between number of contacts and sound velocity

. . a 3D system.
borne by the contact is much smaller than the friction thresh- y

e . For regular arrays, such an explanation may at first appear
old. So, one intuitively expects that the velocity of, say, |°”'doubtfu|. However, Rouf7] has studied numerically the 2D
gitudinal soundv, ~ P/%,

i ~hexagonal close-packélcp structure and found that even a
However, experimental results depart strongly from thisyinyte dispersion in ball radii leads to a similar effect.
expectationw, is found to exhibit a much fasté? depen-  Namely, due to purely geometrical constraints, as the pres-

dence, which is commonly characterized by “effective expo-sure increases, the average number of contacts peNpall
nents” v=d(Inv)/d(In P). Values ofv of order roughly; are  varies from~2.5 at the rigidity threshold to its maximum
often mentioned. Such a behavior is observed for threevalue of 6 at highP.
dimensional (3D) random grain packings, which present  Although such effects seem to be within the reach of a
what we will term “strong topological disorder” but also, mean-field description, the various attempts in this direction
more surprisingly, for artificially built regular arrays of have up to now failed to account for deviations from the
quasimonodisperse balls. This was first shown on a 3D fcglertz power law[8—-10]. As already suggested by Makse
lattice by Duffy and Mindlin[2], who found that the faster et al.[6], we believe this to result from the central but im-
dependence withv~3 in the intermediate-pressure range plicit assumption of these models that the local contact ar-
tended asymptotically, at higR’s, towards the HertZ2'®  rangement deforms homothetically whéhchanges. This
dependence. Recently, Gilles and CdStehave investigated amounts to neglecting the essential effect of local stress in-
in detail sound propagation in a 2D hexagonal lattice of steehomogeneities: due to the elastic Hertz deformations, they
balls. Their experimental results fog (P), which are quali-  result in a dispersion of intercenter distances, and hence of
the bond strengths. In other words, even in the absence of a
change in contact number, the change of bond stiffness in-
*Permanent address: Faculty of Mathematics and Physics, Charlekiced by a pressure change is nonaffine.

University, Ke Karlovn 5, 121 16 Praha 2, Czech Republic. While it is certainly very difficult to improve upon this
TAssocieau Centre National de la Recherche Scientifique et awapproximation in the case of strong topological disorder, the
Universites Paris VI et VII. case of a periodic array of weakly disperse balls seems ame-
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nable to a realistic description. Indeed, in this case, the exis-
tence of a reference lattice permits to formulate a mean-field
theory in the spirit of the single center self-consistent coher-
ent potential approximation approad¢hl], developed al-
ready long ago to describe the electronic properties of me-
tallic alloys. Such a route was already explored in a series of
papers on depleted elastic networki?,13. However, in
these works, the distribution of active contacts was assumed
to be known and independent of the external stress, and the
self-consistent condition was formulated in terms of a single-
bond approximation, in the spirit of Kirkpatrick’s approach
to percolation problemgl4].

In this paper, we build an effective medium description of
a 2D hcp array of Hertz-Mindlin balls, which does account
for local deformation due to the disorder in ball radii. In
contrast with previous theories, our self-consistency condi-
tion does depend on the global external stress. Clearly, in
such a system, the higher the external pressure, the smaller

the relative disorder. So, our mean field appears as amigh-

) . . aller than the friction thresholdf, the contact is pinned
expansion. It therefore complements the numerical studies @ . : ;
. . ; . and cannot slide. The elastic response of this system to small
Roux, which deal with the loviR regime where percolation

effects are dominant. additional forcessf,, of, in the (x,y) plane is described, in

We show that our predictions account quantitatively fothett]near atpf)l\r/qumatmn, by tyvo stiffness coe_fﬁuents, g|_ven
the experimental results of Gilles and Coste. Moreover, com>y the Hertz=vindiin expressions, namefly], (i) compres
parison with Roux’s results in an overlapping intermediate->""" (norma) stiffness
pressure range allows us to determine the range of validity of £
our effective medium approach. We find that it holds down to kij=— X =(3E* Zdi*jf )13 2
pressures wherl. has decreased by about 15% of its satu- o)
ration value. From all this, we conclude that the basic physi-
cal effect responsible for departures from tR&° law is, ~ Where
rather than the variation of contact number in itself, the dis- £
order induced spatial stress fluctuations. EX= s, (df) '=3(d  +dY); @)

The paper is organized as follows. In Sec. Il we set the 2(1-0°)
basis of our model by writing the dynamical equations for a ) )
set of Hertz-Mindlin contacts under equilibrium forces (i) shear(tangential stiffness
aligned with the intercenter directions, and solve them for an
ideal lattice of perfectly identical balls. In Sec. Ill, we build o= ke _ 2(1-o0) (4)
up our mean-field description, apply it to the hcp lattice, and AR
obtain from it the equation of state, i.e., the force-
displacement relation from which the effective bulk and Let us insist here that the fact that the ragie- «;; /k;; is
shear moduli are derived. Section IV compares in detail the@ mere material parameter, independent of the values of the
mean-field predictions with the experimental and numericakquilibrium forces, only holds for the case of a purely normal

FIG. 1. Sketch of the ideal 2D hcp lattice.

results. equilibrium loading, which we assume to be the case here. In
the general situation with a finite equilibrium tangential load
Il. BASIC MODEL AND DYNAMICAL EQUATIONS fi, 7— 1= (fi/usf)™]. In the following, we will restrict
_ _ ourselves to situations where a&#quilibrium and nonequi-
A. Equations of motion librium) interball forces are near normal, so that both the

Let us first consider two spherical balls labelgcf radii  Static and dynamic shear responses are described by the lin-
d;, d; made of the same material, of Young modules ~€ar shear stiffnesEq. (4)]. _
Poisson ratioo, densityp. The balls at equilibrium are in ~ Small displacements of the balls can be decomposed into
Hertz contac1] under a forcef directed along the inter- rigid translationsy;, u; and rotations aboudzby anglesg; ,
center axigj, i.e., normal to the contact circle. ¢; . Denoting byf;; , t;; the unit vectors normal and tangents

The normal force displaces the intercenter distance fromto the (ij) contact withfy;; directed fromi to j (see Fig. 1,
dij=%(di+dj) to a;;=d;;— g, and one immediately finds that the force and torque on ball
associated with th@ contact read, respectively,

9f2 1/3
5—-(f):(—) . ) o .
! 4djjE*? OF; j=Kij[(ui—up) - Aij 1A + 77Ki; [ (U — up) - 1 ]t
Due to solid friction, when submitted to a tangential force — nkijz(d; ¢, +di¢i)fij : (5
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d. . 6
5Ci,j:nkij?[(uij_ui)'tij_%(dj¢j+di¢i)]u (6) 5 | Ngtenl
4 .
and, in the small displacement limit appropriate to sound 3
propagation, the equations of motion for a 2D lattice of balls 0
are
1
mpd? 0
Mli]i:Z 5Fi,j' Mi:L, (7) M r K
i 6
5 M
di M,
= oCij, li= 10 (8)

{ir

where the sums are restricted to nearest neighbors in direct
contact withi.

B. Ideal hcp lattice

We now consider the ideal case of a 2D hcp lattice of
balls of equal diametedt prepared so that, at equilibrium, the  FIG. 2. Dimensionless dispersion curves for vibrations in the
interball forces, of magnitudg are directed along the nor- hcp lattice along two principal directions in the Brillouin zone.
mals to the contacts; (see Fig. L Such a “hydrostatic’  Units: (k/M)"?for frequency, 2r/d for wave vector. Upper panel:
Conﬂguraﬂon can be realized by app|y|ng a force per unrﬁl’lCtlona' balls, ns[ee,—O 84. Lower panel: frictionless balls. Middle:
lengthP=fv3/d on a hexagonal container with walls along Brillouin zone, K= 52/d, TM=(1//3)2x/d.
the dense ball rows, as realized 8]. The unit cell is defined

by the two vectorsa, ,=df;,, the ball centers byR,, (i) Pure longitudinal acoustic modes of frequeney

=ma;+na,. ' ’ =v.q, where the longitudinal sound velocity is given by
One then obtains from Eq$5)—(8), for the vibrational 9 K

modes of this system, UE:§<1+ g)ﬁdz' (13)

Unn=UeXpld-Rmp—wt],  émn=¢expl(q-Rpn—owt)], B ] o
(9 (i) Two branches of mixed modes containing both a
transverse translational and a rotational component. One of

) 3 o o them is acousticw=v+1(, where the transverse sound veloc-
Mo U:2kp§_:1 [1-Cp(a)][(u-Ap)hg+ (nu-t,)T,] ity reads

3

~ _ A2
+i nkdqsp; Sy, (10) vi= 8 (1+ 2y d (14)
The second, which corresponds to pure rotation inctked

° 2 3 limit, is an optical branch defined by

d
Iw2¢=—mkd2 Sp(@)(u-tp) + 7k = ¢>2 [1+Cy(a)],
k
1y wh=307 1 (1~ %0%d%). (15

wherek is the normal stiffness common to all contacts and
That is, as already shown by Schwartz, Johnson, and Feng
Sy(q)=sind(g-fp)], Cy(q)=codd(qg-ny)], (12 [15], the specificity of the vibration spectra of granular sys-
tems in frictional Hertz contact, as compared with atomic
and use has been made of relations such as n,=0. systems, lies in the additional degree of freedom associated
The exact spectrum in the full Brillouin zone, computed with ball rotation. This remains coupled, in the long wave-
for g along two directions of high symmetry, is shown on length limit, with shear deformation, leading to a contribu-
Fig. 2. It can be inferred from these results that in this closetion (—37kd?/4M) to v2.
packed lattice the anisotropy of the spectrum is small. Also shown in Fig. 2 are the long wavelength dispersion
In the elastic continuum, long wavelength lingd<<1, curves. They can be seen to provide a good approximation
decomposing the translation amplitude into its longitudinalfor the exact spectrum in a sizeable fraction of the Brillouin
and transverse components=u,§+u, (2Xq), one finds zone.
that the vibration spectrum, which is isotropic due to the It is worth recalling at this point that our equations of
hexagonal symmetry of the lattice, is composed of threamotion cease to be valid when the frequency approaches that
branches. of the lowest acoustic resonance of a bales=vpy/d,
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with v, being the sound velocity of the material constitut- ~ One sample(configuration of the random hcp array of
ing the balls. Indeed, in this situation, elastic deformationgdalls may be created by randomly distributing the balls in an
are no longer localized in a small region of extension of theuncorrelated way over the sites of a reference hcp lattice.
order of the contact radius, internal deformations becomdhe number of balls is assumed to be sufficiently large for
important, and the restoring forces can no longer be dethe thermodynamic limit to be approached. The sample is
scribed simply via the Hertz-Mindlin stiffnesses. Roughly then random but macroscopically homogeneous. The balls
speaking, this means that our expressions for the acoust®f€ brought into contact and further compressed by external
branches of the spectrum are valid provided that; compressive forces applied to the sample boundaries so that
<vpuk. In view of Egs.(13), (14), and (2), this simply the average internal stress is hydrostatic. An easy way of
amounts to {/Ed?) <1, which is realized under ordinary achieving this is to assume a hexagon shaped sample and to
experimental condition§16]. Note that this condition is apply to all its sides the same macroscopic pressure force.
equivalent to stating that the radius of the Hertz contactl he pressure force per unit leng#will be henceforth called
circle must be much smaller that the ball radius, which islinear pressure Under this pressure, the size of the com-
precisely the condition for the Hertz approach to hold. pressed sample is reduced, while the symmetry of the lattice
From planar continuum elasticity applied to a mediumis preserved on average. It is thus meaningful to introduce an
with hexagonal symmetry, the velocities of sound wavegiverage lattice spacing as a macroscopic parameter having
with propagation and polarization directions in the basal thermodynamic limit and globally characterizing the state

plane read of the sample. .
The pressure and the size of the compressed system are

K+G c related by themacroscopic equation of stafer the random
= (160 Jattice under hydrostatic compression. It will be convenient
to introduce it in the form

where)p is the mass density of the mediul,andG are its

bulk and shear moduli, respectively. f=f(a), f=Pd/3, (20)
Comparison between these expressions and @8sand

(14) enables us to define elastic moduli for our ball lattice—a

result that will be of use in the disordered case. They read Wheref is the functional dependence in question drue-
notes theaverage intergrain hydrostatic forcassociated

V3 k (1+7) with the linear pressur®. The effective normal stiffness k
K= 2 q’ T K, (17 and the effective bulk modulus .4 are then given by
where’p is related to the density of the ball material py ~ df(a) a2 V3L
=7Tp/3\/§. k(a)=—W, KEFFd:_W:7k- (21)

Ill. DISORDERED LATTICE dp

A. Random hcp array of balls under hydrostatic compression As for thed factor on the left-hand side, cf. E4L7)

Consider an ensemble of balls whose material parameters While the global characteristid® and a have thermody-
are identical, while their diameters vary at random with anamic limits, the ball positions and contact forces are subject
continuous or discrete statistical distribution. A diameterto pronounced fluctuations, in particular for small external
valued?, with a formal labelQ, has the probability or frac- loads. In experiments, this double nature of the disordered
tional concentratiort® and=cQ=1. state is manifested by the coexistence of coherent signals and

The mean diametat of a set ofN>1 such balls may be irregular speckles in the acoustic respofd7], in numeri-
obtained by configuration average, which we will denote bycal simulations most clearly by the formation of force chains
¢+ [7,18].

Let us first verify that the geometrical disorder can be

1 taken as small, as demanded in Sec. Il A. If the relative di-
d_NZ diﬂd=<d>_% ¢ d?. (18) ameter spread is small, the equilibrium disordered system
can be treated, for any external pressure, as a distorted lat-
We define the random deviations by tice. The balls are slightly displaced, and, in the case of
frictional balls, the contact points may be somewhat off the
Aj=d;—d, A%=d%-d, intercenter lines, which gives rise to non-normal contact

forces. Taking as representative the datd3jf W=8 um,
d=8 mm for steel balls, we see that the relative dispersion in
“bond” lengths is of the order of 10°. By geometrical con-
siderations, this corresponds to deviations of the direction of
In actual computations, we will use the uniform distribution the contact force from the normal also of about i€ad.
with full width W=maxA%}—min{A®}, which meansArys These figures indicate that the geometrical disorder in this
=W,/12. case is small indeed.

(A)=0, AZys=(A%)=2 cA92 (19
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Fluctuations in the magnitude of the random contactfor a force at a separatiox between two balls of the pre-

forces, by contrast, may be quite large. From ED, the  scribed specie®, Q' with d°% = (d?+d®")=d+AQ%',
contact force as a function of intercenter distance is given bysymptotically,

LE*(d¥)V(d,—x)? 2
3 ij i © o —x>0 oo 3 Agwvs

Jij(x)= ~d ! 22 f(a)~F(a)| 1+ 8 (d—a)? (26)
0, d,j_x<0.

and the bulk modulus becomes

As indicated by the underbrace in EG2), it is consistent to 2 Aw24—1n203
neglect the randomness df, . Namely, the fractional fluc- Koo —K ( 1 ARus(3E*7dT) ) @
. * 1 . AFAT INALA 43

tuation ofdfi ~d+3(A;+4;) is ~Agys/d. 8 P

On the other hand, the disorder of the last factor in Eq.
(22) is crucial: for the Hertz displacemedt; —x, the ratio  These two equations show that the AFA effective contacts are
Arus/(d—X) may be large or small depending on the degreenon-Hertzian, and that the pressure dependence of the elastic
of compression of the balls, while both basic conditions.modulus deviates from the simplepower law.
Agvs<d (small disorder andd—x<d (Hertz picture, re- While the ALA has an arbitrary nature, the AFA seems to
main satisfied. We may thus envisage three different regimese justified for high pressures, when the geometrical disorder
is small compared to the compressive displacements, while

Regime Condition i . o

g the contact forces still continue to exhibit random fluctua-
Low pressure Agus>d—x tions. These force fluctuations then appear as being respon-
Intermediate pressure Agus~d—x sible for the non-Hertzian features of the effective contacts
High pressure Apus<d—x [20].

At lower, “intermediate,” pressures, according to our

In the high-pressure Hertz regimAgys<d—x<d, the @above classification, all grains are still mutually engaged
disorder appears as a perturbation of a basic homogeneoﬂyough their contacts, but the random.displacemen.ts become
and homogeneously compressed crystal. This natural conjeomparable to the global compressive deformations. The

ture has given rise to two simple, but useful approximationd\FA is then not sufficient, while an approximation taking
(see[7]) for the true effective medium. these local lattice distortions into account in an averaged

manner may be satisfactory. The effective medium approxi-
(i) The averaged lattice approximatiofALA) replaces mation(EMA) described in the next section is an attempt in
the true sample by an ideal lattice of balls with the diametethis direction.
d. The constitutive law and the bulk modulus thus rgaé]|
?(a): %E*dllz(d_a)?_;_/ZEF(a), 23) B. Effective medium approximation
Now, we are ready to build our effective medium approxi-
13 mation for the disordered hexagonal array of balls. We use
(24  this name, conventional in the context of granular assem-
blies, but as sketched already in the Introduction, a more
descriptive name would refer to the mean-field nature of the
approximation, or, alternatively, to its “single-site” charac-
ter. The universal idea of such approximations is as follows

(||) Theaveraged force approx|mat|qm\FA) assumes the [ll] We will Only consider disordered SyStemS in which a
balls to be positioned at any pressure exactly at the latticBeriodic geometrical latticéD hcp in our casgis filled by
sites, while the contact forces are given by E2p). In this ~ €lementary objects associated with individual siteslls for
strictly symmetric geometry, no shear forces between thélS) and having randomly variable characteristiadii). It is
grains occur, and the effective hydrostatic force between tw@ssumed that the macroscopic properties of such random sys-

9 P
KALA:E*(EETd

Thus, the bulk modulus naturally obeys the plain Héraw,
as is appropriate for a periodic arrésee Sec. )l

adjacent sites is obtained by configuration averaging, tems can be obtained, in principle, by configuration averag-
ing. The configurationally averaged system is exactly peri-
?(a):“ij(a))EFav(a) odic again. In the mean-field approximation, one assumes

that it can be represented as a periodic array of effective
elementary objects similar in nature to the random elements

Fa(@)= > cQQ'FO (a), (25)  of the real array. The characteristics of these are determined
Q.Q’ by the following self-consistent procedure. One of the effec-
, ] tive elements is replaced batkubstituteglby a true random
where we have introduced the notation one. The new system is locally sampled in a random fashion.
, , It is then required that a configuration average of these lo-
FOQ(x)=5E*d¥AdQ —x)32. (253 cally distorted systems restores the average behavior. This
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condition determines the characteristics of the effective ele-
ments. Once this has been done, the whole task of configu
ration averaging is complete.

An effective medium theory along these lines was devel-
oped by Feng and co-workers 2,13 to study depleted
elastic networks on lattices. The basic element in the theory
of these authors was a single bond connecting two lattice
sites. The bonds were described by their linear stiffnesses
whose random distribution was prescrib&griori. The re-
sulting EMA [a single-bond CPAprovided a theory for the
effective linear elasticity of the network, and for its vibra- FIG. 3. Graphical representation of the EMA averaging process.
tional spectrum. On the left, a clustefcentral ball 0 surrounded by its corona, balls

While this bond EMA was a successful theory in its own 1-6) embedded in the _effective_- medium. C_onfiguration averaging
area, we contend that it cannot be used for random Hertg ) restores the effective medium on the right.
lattices for two essential reasons.

(i) The elementary object in a granular system is a balladjacent effective balls are taken as effective ones, associated
The star of(six for 2D hcp contacts surrounding the ball, with the forcef. This type of approximation is based on the
that is, of “bonds” stemming from the center, is statistically mean-field reasoning: the fluctuations of the remote parts of
correlated, and the bonds cannot be treated as independerthe lattice should not have a significant effect on the central

(i) The linear stiffnesses of the contacts are not knowrsite.
beforehand. They are indirectly specified by the average ex- Inside the cluster, the corona balls might appear as “true”
ternal pressure, but their local fluctuations depend on theandomly chosen balls, so that the contact forces would be of
equilibrium ball positions and cannot be determined indepenthe formFQQ" as given by Eq(25a. A straightforward pro-
dently of the nonlinear static equilibration of the Hertz array cedure involving averaging over the individually equilibrated
at a given pressure. ) ] positions of such randomly composed clusters of seven balls,
These two points are of a different nature and importanceyhile conceivable, would be disproportionately clumsy.

The second point holds for any granular system, and we e prefer to introduce a model of theorona which,

believe that it is precisely this that has been the obstaclgnile simple and transparent, captures the core features of
against developing a satisfactory EMA for the acoustic rethe problem.

sponse of granular materials. It may be said that the grain
network should fuffill two contradicting roles at the same (1) The contact forces between the central ball and the
time, namely, it should constitute the medium for wavecorona balls are averaged over the corona configurations,
propagation as well as the random scattering field. We will
see how this basic problem can be overcome in our rather
specifically constructed case. fo(X)—FQx)=> c¥FQ(x), i=1+6. (298

Q!

1. EMA for frictionless balls

sider first the case of nonfrictional Hertz contatftemally, ~ tuations caused by the randomness of the central ball, while

n=0). The averaged array is assumed to consigiffeictive  all angular correlations are averaged over and the forces have
balls whose diameter ig. The principal assumption is that full hexagonal symmetry. .

the average hydrostatic for&éa) can be interpreted locally (2) The contact for_ces between the _touchlng~corona balls

as a contact force between two effective balls, so Kfa) are assumed to be given by the effective force 4w

=—(d/da)f(a) is the stiffness of an effective contact be- The displacements of the corona balls are then also symmet-
tween two such balls. Now, we select one site, “0,” as cen-ric. This restores the basic picture of a symmetric inclusion
tral and substitute a ball with diametdf for the effective in the effective lattice. The central ball remains at its site,
ball. The differenced?—a in diameters will give rise to an while the corona breathes around it symmetrically in accor-
elastic deformation of the effective lattice. In other words,dance with the central site occupancy and transfers this to an
the substituted ball acts as an elastic inclusion. On averageguilibrium symmetric distortion of the surrounding effective
the deformation should cancel. This would define the EMAlattice.

condition, if only we were able to determine the force be- Returning to Fig. 3, we see that the cluster is surrounded
tween a real and an effective ball. This is not possible diby 12 effective balls forming a hexagon. They are of two
rectly, and we propose to overcome this by considering &inds: six occupy the corner8on-top” positions with re-
cluster consisting of the central ball and a “corona” of its spect to the corona balland another six sit along the edges
nearest neighbors as sketched in Fig. 3. These neighbot%ridge” positions). The displacement field around the “1”
have a hybrid nature. In other words, the interface betweeligand is sketched in Fig. 4. The scalaiis the radial dis-

the effective medium and the inclusion passes through thplacement common to all corona balls, andu, correspond
corona balls. All contacts between the corona balls and th& the on-top and bridge neighbors, respectively. The arrows
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Now, we require thathe total equilibrium force on ball 1
vanishes and subtract from this condition the equilibrium
condition for the effective lattice

f01+f6l+fﬁl+fal+fﬁ’l+le: 0,

F(a){fy+ A+ Ag+Ay+As+Agt=0. (33

Only the component parallel to the 01 connecting line is
nontrivial. With the help of Eq(31) it reduces to a single
equation for a single unknown, the corona radial displace-
ment, with the solution

FIG. 4. Displacements of the neighbors of the cluster central
ball 0. Corona balls: 1, 2, 6. Second neighbors: effective balls in the FQ(a) _Nf(a)
on-top(a) and bridge(8 and B') positions. uQ:—N, (39
K9(a)+Ek(a)

indicate the directions of the displacements, whose magni-
tude varies with th& label of the central ball, and should be where
labeledu®, ug,....

Ball 1 is acted upon by contact forces from all its neigh- = E_a_ ﬁ (35)
bors. The force coming from the central ball is randidq. -2 2
(28)],

is again a geometrical factor. The equation has a simple in-
foi=F2(a+u®)n,. (29)  terpretation. For a give, the difference between the force
exerted by the inclusion and the average force gives rise to a
In the regime of small displacemerits high pressuréswe  radial displacement. Its magnitude is related to the force by

may expand an additively renormalized stiffnes®flecting the fact that
the corona is supported by the rest of tleéfective lattice.
- d In the mean-field context, this renormalization imeal field
for=[F2(a)—K%(a)u®In;, K(x)=——Fx). . : o .
dx correction and the parameté€ measures its dimensionless

(300 strength.

. . . L Now, we may impose the self-consistency condition, re-
The remaining five forces are given by the effective interac- Y Imp y

L _ 7 quiring that the average displacement be zero,

tion f. They are of three types. In the regime of small dis-

placements, we obtaifcf. Eq. (5)] 0 %
F~—f

N - . (U=>, cQ——=0, (36)

foi=T(a),—k(a)(uU®—ud)n,, QO K9+Ek

1 where the argument of all functionsas This single implicit
[uQrﬁl—ugF(ﬁlnL ﬁz)] -ﬁzlﬁz, equation links the corona radial displacement with the un-

> knownf. It can be rearranged into a suitable explicit form.
First, introduce

fo=T(a)hs—k(a)

fy, ... =Tf(a)fz—k(a)u®M;. (31)

The forces depend on the three displacemeftsug, us. Fa=(F)=2 c9FQ
In the linear elasticity regime corresponding to our assump- Q
tion of small displacements, a simple universal relation exists

between these three displacements, 1 3 @ 1

(37)

" —.
Qy =

Up=au, Ug=pu, (32 K °  KU+Ek

where a and 8 are geometrical parameters independent of av IS easily* recognized as the averaged force of the AFA

the magnitude ofu. They can be determined for a linear [EQ- (29] K* is an averaged radial stiffness of the lattice

elastic array of nonfrictional balls once for ever, although notsurrounding a single ball inclusion. Writing?—f=(F°

in a closed analytic form. Details of the calculation of both —F_ )+ (F,,~f) and using Eq.37), we bring the EMA

parameters are in the Appendix. The resulting values are condition(36) to the form

@=0.585 405 ( 1

~ 1
f=FatK* X c® —————|(FO-F,). (39
B=0.232971 Q Ke+=Zk K

021307-7



B. VELICKY AND C. CAROLI PHYSICAL REVIEW E 65 021307

The average hydrostatic fordefor a given lattice spacing is 2. EMA for frictional balls

seen to contain two contributions. First, the nonselfconsistent The case of frictional balls is very important for a proper
averaged contact force, and, second, a term having the chajomparison with existing experimental data. A formal devel-
acteristic structure of a correlator involving self-consistentopment of the EMA for frictional balls can proceed quickly,
fluctuations of two random variables. This form is known pecause the steps are almost identical with those made for
from CPA-like theories. We have to refer to REEL] for the  the nonfrictional case. It is necessary, however, to extend the
original CPA for electrons in alloys, but here we cont@®  description of the effective medium. As before, it is assumed
with the bond CPA of Refd.12,13. Their CPA for an effec-  to be composed of effective balls with diamegeinteracting

tive stiffness of a depleted elastic network had the samehrough effective contacts. In addition to the average hydro-

overall form, but it was an algebraic equation, because theiiic forcef and the normal stiffnede= —(dida)T(a), we
stiffnesses of the bonds were taken as known and the forge, o o postulate also a local shé@ngential stiffness'Tc as

whose derivative determines the stiffness did not enter thﬁthird basic characteristic of the effective contact. Eowe
equations. In our case, we have to consider the forces and t'?@rmulate our basic conjecture '

stiffnesses simultaneously, and the second term of3B).is
responsible for the peculiar character of the self-consistency. = 77]2_ (42)

It is not the unknowrf itself that appears on its right-hand

side, but its derivativ&(a) = —(d/d a)~f(a), so that Eq(38) In words, the effective shear and compres_sive stiffnesses are

has the form related in the same manner as the two stiffnesses for actual
Hertz-Mindlin contacts; in Eq(4), 7 is introduced as their
ratio and expressed in terms of the bulk Poisson ratio

- alone. This independence of on the local geometry and

a,ﬁf(a)), (39  forces supports the above ansatz. It is justified within the
AFA, that is, in an asymptotic sense. We will further discuss
this intuitively appealing conjecture below, but first derive

where F is a complicated but well-defined function. The the EMA equations following the preceding paragraph step
EMA equation is thus a first-order differential equation de-by Step. . . _ _
terminingT as a function of. In other words, we have here The central ball inclusion and its symmetrized corona are

a case where self-consistency cannot be written directly fomtr_oduced without changes and both Figs. 3 a_nd 4 remain
an isolated value of the control parameterbut involves valid. Due to the symmetry of the cluster, there is no torque

S . ~ . acting on either the central or the corona balls and only the
intrinsically the whole functional dependenff@). This is a g y

hvsical rather th ¢ r fthe th q hforce equilibrium has to be considered. The central ball is
physical rather than a formal feature of the theory due to t @quilibrated automatically, and we inspect the forces acting
nonlinearity of the Hertz forces and stiffnes$ese Eq(2)].

. . . ! on the corona ball 1, linearized again with respect to the
The notion of an incremental buildup of stress was intro-

: - small displacements. The full expressi@) must be used
duced in[2] for general Hertz-Mindlin granular systems. Our ;" The relative displacements remain radial for all the

system is special in that it remains elastic. On the other hanq1eighbors of ball 1, except for theand 8’ ones(see Fig. 4
local distortions in the random ball arrangements depend OBor gs, the contact force has a shear component o

the global evolution of the system and cannot be obtained
but via an incremental process, of which the EMA equation
(39 is the mean-field representatip®i]. fﬁlz?(a)ﬁ5—~k(a)
To select the physically relevant solution of E§9), we
rely upon the high-pressure asymptotic boundary condition

fa)=F (a)+F

f—
=)
—

1
[ uQﬁl—ug‘/—j(ﬁlnL ﬁz)] -ﬁzlﬁz—%(a)

X

u®hn —uQi(ﬁ +hy) - To|t (42
B 1 g‘/j 17 N2 21t
f(a)~F.(a) for Agyn<d—a (<d). (40
and similarly forg’. Finally, the displacements?, u?, ug
obey, in the linear elasticity regime, universal relations simi-
It can be explicitly verified from Eq(38) that the contact of  |ar to Eq.(32),
T with F, stipulated by Eq(40) is of second order, so that
the boundary condition is formally justified. Physically, this U,=a(n)u, ug=p(nu, (43)
condition means that the EMA coincides with the AFA in the
asymptotic limit of high pressures, but extends the mean
field description of the system to an intermediate—pressuréat
region. We may also say that our EMA is a self-consistent
resummation of the high-pressure perturbation expansion f

the equation of staté(a).

The solution of the EMA equatiofB89) is obtained with- FQ(a) —?(a)
out difficulty by numerical iteration starting from(®)(a) uQ:—~
=Fa(a). K?(a)+E k(a)

where thea and 8 parameters depend now on the stiffness
io n, as indicated.

Introducing Eqs(41)—(43) into the equilibrium condition
3), which is fully general, we obtain the corona radial dis-
placement as

: (44)
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in complete analogy with the frictionless case, BBf). The  While the first relation is exact, we should discuss the mean-
only change is anp-dependent geometrical factor, which ing of the second one. It turns out that the equivalent relation
reads now (17) for the ideal array is a direct consequence of the Mindlin
ratio (6) between near-normal stiffnesses and does not de-
3 pend on the specific value or character of the compressive
——pB(n)—=|. (45 stiffness. Thus, the second of E¢47) is in fact equivalent
2 2 ; . ) .
to our conjecturég41) about the ratio of effective stiffnesses,

%= nk. Once the effective moduli are known, the sound ve-
locities become

5 V3
Ep=ymalm=Bn) 5 +n

The EMA condition(u®)=0, Eq. (36), has a universal
character, and withi® given by Eq.(44), it can be brought
successively to various explicit forms following strictly Egs. , Kefit Gen
(36)—(39), with = of Eq. (35) replaced everywhere & ,, as e
given by Eq.(45). For convenience, we present here the final
form of the EMA,

, vi=—. (48)

p p

Equations(47) then predict for the velocity ratio that

v

N

3+7
—m. (49

T(a)zFa\,(a)+J-'(E,7 a,%?(a)) (46)

c
=N

The corresponding boundary conditi¢d0) is 7 indepen- This is a very strong prediction, according to which the ve-
dent. The two complementary cases, frictional and nonfriclocity ratio should depend neither on the pressure nor on the
tional, are thus given by the same differential equation withdisorder level, being fully determined by the material prop-
the same boundary condition. They are only distinguished bgrties of the grains. While Eq41) is not susceptible of di-
the value of theZ, parameter, which corresponds 46 0 rect verification, the predicted sound velocity ratio can be
and n= 0’ respective|y. In other Words’ the difference be--tested for a W|de rang? of Systems. Note that a S|m|lar con-
tween the two physical situations is reflected in the EMAI€cture concerning this ratio was formulated earlier by

through the strength of the local field correction appearing inschwartz, Johnson, and FefttH].
the renormalized contact stiffness. In order to avoid resorting to such a guess, one would

have to develop an extended EMA yielding both moduli

) o Keir .Gt directly by considering also a macroscopic shear.
C. Macroscopic properties in the EMA

To complete the EMA analysis of our granular system, let IV. DISCUSSION
us now derive the expressions for the sound velocities. Mac- i ) o ]
roscopically, the averaged system is a periodic hcp structure, We first confront our mean-field predictions with the ex-
so that it is acoustically isotropic and there exist just twoP€fimental data obtained by Gilles and Cost on an hcp
sound velocitiesy, andv, as in the ideal lattice of Sec. lattice of _steel t_)alls confined by a hexagpnal frame under
I B. There, we proceeded from the full dispersion law in theNydrostatic loading. They measured the time of flight of a
Brillouin zone to the long wavelength limfiEgs. (13) and  low frequency sound pulse between two opposite sides of the
(14)], then to the elastic modulil7) on the basis of the frame. From th|s we obtain the I(_)ngl.tudmal sound velocity
macroscopidcontinuun) relations(16). v (f), wheref is the average equilibrium contact force, Eq.

For the disordered system, we shall go in the reverse di20)- . ) )
rection. The EMA yields directly the equation of stf(@) The experimental data show that at the highest loadings

_ _ e _ used,v, approaches closely thB® Hertz behavior. This
and the effective compressive stiffnégg). The equation of

. . i 3 confirms that, in this regime, the applied pressure is high
state is a monotonic function @f and thus can be inverted enough for disorder effects to be weak, and for the com-

into a(f). Using Eg.(20), we obtain finally the average pressed lattice to be close to the ideal hcp one.

lattice spacing as a function of the linear pressei@nd any We, therefore, focus first on the data for the largest forces
function of a, such as the bulk modulus, can be converted,seq in the experiments. For example, an external force of
into a function of the pressure. ~990 N applied on each side of a hexagon with 31 balls in

The bulk modulus is obtained from the stiffndssising  contact with each side correspondsfte 18.446 N. Taking
Eq. (21). It should be stressed that E¢%7) and(21) have an  for steelE=9.20x 10!°Pa, ¢=0.276,p= 7840 kg m 3, ball
identical form; in fact, Eq(17) as far as it concerns the bulk diametersd=8 mm, we get from Eqs(2), (3), and(13) v,
modulus is but a special case of HG1) for zero disorder. =791 msec?, to be compared with the experimental value

As concerns the shear modulus, since our method only abf 778 msec’. The agreement is seen to be excellent, to the
lows for treating the effect of hydrostatic stresses, we resofrecision of the numerical input.

to an ansatz, i.e., we propose to extend relatioh for G to Note that the contribution of the tangential contact stiff-
the disordered case. We then get ness is non-negligible: with the above valuesfthe Mind-

~ lin coefficientp=0.84. Neglecting the frictional character of

K :‘ﬁ 5 G (1+7) K 47 the contacts #=0) leads to underestimating the longitudinal

e~ g+ Tef o el velocity by ~11%, well out of the experimental error bar.
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FIG. 5. Square root of effective compressive stiffness vs effec-
tive contact force. Squares: experiméRef. [3]). Thick line: EMA FIG. 6. Effective force vs displacement in dimensionless units
for frictional balls. Dashed line: EMA for frictionless balls. Thin (see text for frictionless balls.a¥ corresponds to the rigidity

line: ALA (ideal Hertz dependente threshold. Dots: numerical results. Dash-dotted lines: power law

. . approximants of numerical resuliRef. [7]).
For the transverse velocity, the two values would differ by PP Bt [7)

~35%, but no experimental data are available. These differ- f—2N. Furth direct t of th
ences in velocities are clearly reflected in the different slopeg0 =< N. Furthermore, no direct measurement of the equa-

of the dispersion curves for the frictional and nonfrictional ion of statef(a) is available yet. It is, therefore, of great
cases in Fig. 2. interest to complement the above comparison with a con-

With the values ofy, at hand, we may return to the dis- frontation between mean-field predictions and the simula-

cussion at the end of Sec. Il B and check first the validity oftions performed by Roui7] on the same system for friction-
the Hertz approach. The bulk sound velocities for the abovéess balls with a uniform random distribution of diameters.
material parameters of steel are, . =5825m sec?, Applied forces span the whole range from almost zero up to
U7 pul= 3252 msect and we may conclude that the condi- the upper experimental limit. The comparison for the equa-
tion VL T<UL 1 puk iS Obeyed. To verify the validity of the tiOn of state is shown in Fig. 6, which is drawn in the dimen-
continuum limit, we have to invoke the ground frequency ofSionless representation used in Réf,
the pulses used in the experimeniss 27X 6500 Hz. This
yields q(27/d) " 1~0.066, much less than 1 indeed. Ex- d+iwW-a f
pressed in terms of wavelengths=~0.122 m~15d. These ar= —w fr= W
estimates made for one pressure may be taken as representa- s
tive for the whole experimental pressure range, as the experi- . _ ) .
mental velocities vary between 500 and 800 nidec In these units, the exact equation of stit¢a*) is a univer-

In order to analyze the pressure dependence, we dedu8! function[7] if approximation(22) is used. It is easy to
from thev, data the effective normal stiffneds with the verify on Eq.(38) that the EMA has the same property.

* * — i
help of Egs.(49) and(48), assuming frictional contacts with Clearly,a_ =0. Fora® =0, t.h(.a palls barely start touchm.g,
»=0.84. It is plotted on Fig. 5. It is clearly seen that the ag =0.343 is the so-called rigidity threshold, below which

high-pressure data fit the straight line corresponding to thde disordered lattice cannot sustain compressibe 1 is

ideal lattice. Asf decreases, the logarithmic slope increases,
coming close to the popular~% value. However, no sharp
crossover is identifiable, the transition being completely
smooth. 0.8 |
We then solve the mean-field equation numerically. All
parameters are known, except for the width of the distribu-
tion of ball diameters. Diameter scatter is only qualified, in &
the experiment, through a tolerance-o# um. We assume a *—
uniform distribution whose widthV is our single fitting pa- 04
rameter. We find that the best fit is obtained faV
=2.04m, completely compatible with the tolerance figure. 0.2t
The fit itself is seen to be very good in the whole experimen-
tal range. The EMA is shown both for frictional and nonfric- o
tional balls. The results are only weakly sensitive to the 0 0.2 0.4 0.6 0.8 1 12 14
value of , at striking variance with the sound velocity itself. *
For the latter quantity, however, the dependence enters
primarily through theG /K ratio. FIG. 7. Effective force vs displacement in the “Hertz” represen-
The experimentdl range is limited, on the low force side, tation. Data and symbols as in Fig. 6.

06

RIGIDITY THRESHOLD
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FIG. 9. Relative fluctuation of local contact force vs dimension-
FIG. 8. Square root of effective compressive stiffness vs effeciess displacement. Full line: EMA for frictional balls. Thick dashed
tive contact forcgdimensionless unijs line: EMA for frictionless balls. Dotted line: AFA.

the region where all neighbors are already in contact, and The plot of Fig. 9 shows that the relative fluctuations
a*>1 is the high-pressure limit. In a narrow range above thelecrease rapidly with increasing displacement, i.e., pressure,
rigidity threshold, a quasi-Hertz regime is found followed, in the above mentioned empirical limit corresponding to the
the intermediate force range, by a steeper variation. Théeasonable valuaf*/f*=0.6. The reduction of the local
mean-field result shown here, also calculated for frictionles$tressiforce) fluctuations due to the self-consistent local dis-
balls, appears to agree with the numerical data fat ( placements is reflected in the relative magnitude of the EMA
—a%)=0.3. Also shown are the curves corresponding to thétnd AFA fluctuations. The frictionless balls appear to adjust
ALA and to the AFA. They frame the exact and the EMA their positions more effectively, as could be expected.
results from below and from above, respectively. For high _Finally, we have estimated the average fraction of active
pressures, all plots merge. We replot the same data in Fig. §oNtacts per balN in our effective lattice in the following
using the linear scale for the lattice spacing andipewer ~ WaY- We define it to be the average number of neighbors with
scale for the forces, so that the natural range of various redn intercenter distance smaller than the sum of the corre-

gimes can be better assessed. In particular, note the strikirgponding radii.
improvement of EMA over the AFA for intermediate pres-
sures. - - NC: 2 CQCQ’ﬁ
In Fig. 8 we return to the experimentally more relevant 0.0’
stiffness-force dependence and plot in dimensionless form
the mean-field and the ALA curves, the data from Roux’sNote that this expression does not derive systematically from
numerical simulations and their power law approximantsthe mean-field formalism, in which the notion of contact
and also the experimental data of Gilles and Coste. Theseumber does not enter explicitly. It should therefore be con-
data are scaled usingV=2.04um and the force unit sidered as indicative only, is plotted on Fig. 10 together
2E*dYAN%2=19.89 N. The overall agreement is truly satis- with the values calculated by Roux. Expressiéi) is seen
factory, which is all the more remarkable that, while experi-to systematically underestimdi&. . It appears that the valid-
ments and mean field are concerned with frictional balls, the
simulations relate to the frictionless case. This is to be re- 1 ' i ' i i i
lated with our previous observation that in the hcp lattice
studied here, the normal stiffness is only weakly sensitive tog
shear interball forces. Such might not be the case for othe\‘g
ball arrays.
As is well known, since mean-field theories are not sys- 06 r 4
tematic expansions in powers of a small parameter, they dce $
not allow for a precise direct assessment of their range 0l8 o4l i .
validity. From this discussion, we can state empirically that £
the validity of our effective medium approximation is limited
to dimensionless forcels* =0.08. This we confirm by calcu-
lating, within the mean-field approximation itself, the rela- 0 , , , , , , ,

tive force fluctuations\ f*/f* = AT/f, andAF,,/F,,, where 0 02 04 06 o 08 1 12 14

T—a—uQ). (51)

08

act fr

02 k

act

FIG. 10. Active contact fraction vs dimensionless displacement.
(Af )222 c [FQ(a)_KQuQ_?(a)]Z' (50) F.uII. line: EMA for frictional bfills. Thick .dashed line: EMA for
Q
Q frictionless balls. Dots: numerical simulati®n].
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1 reason be applicable as well to a 3D lattice such as the fcc
N — one. This would be an additional check of the EMA because
° k/kaLa of the different topology of the 3D lattice, and it would at
08 i last provide a theoretical counterpart to the pioneering ex-
periments of Ref[2].
06 | i Systematic improvement upon this approximation is pos-
sible. This should be based on extending the basic building
block from our(central ball + (average bond stato a full
cluster made of the central ball and of its six neighbors. Such
an extension, although obviously heavy, would have the
merit of explicitly allowing for local asymmetric configura-
tions, which we have ignored here. It would replace the con-
jecture (41) by a direct treatment of the shear interactions
0.1 . 1 between the balls, permitting hence to study macroscopic
f shears in the same manner. It would also be a first step to-
) ) wards taking into account spatial stress correlations, which
FIG. 1.1. The relatl\{e departuief /kj;, , of the EMA effectlve. are completely overlooked in the present approach.
normal stlffr_le_ss from ideal Hertz and the _EMA force fluctuation | view of this last remark, the good agreement obtained
Af*/f* exhibit no sharp change at the poifit=0.3, where the  here with sound velocity data calls for a physical comment.
active contact fractio. saturates to 1. Coherent sound measures a mechanical response on the scale
of the corresponding effective wavelength which, in the low
ity of the mean field extends down b,~85%. However, it  frequency regime of the Gilles-Coste experiments, is at least
is important to point out that the pressure range where thef the order of ten ball diameters, as discussed in Sec. IV. It
sound velocity departs from the Hertz behavior extends welis now well documente(i7,8,29 that the correlation length
into the pressure range where the contact fraction has already the stress network in granular packings is, at most, of the
saturated to 1. This corroborates strongly the idea that it isrder of a fewd. It is therefore to be expected that mean-field
not the connectivity itself which is responsible for the non-theories, though by nature unable to capture long range cor-
Hertz behavior, but the presence of disorder induced stregelations, are well adapted to describe large scale properties.
fluctuations. This is shown in Fig. 11, where we plot togetherThat is, when focusing on large scale mechanical responses,
the EMA results forN, ,Af*/f* and the ratick/k, » . This  the pertinent notion is that of a global fluctuating stress net-
latter quantity is a direct measure of the deviations of theVork. The complementary notion of stress chains, which em-
effective stiffness from the ideal Hertz law. No sharp changg?hasizes the long range part of correlations, is certainly more
of regime occurs at saturation B, the non-Hertz behavior relevant to the question of acoustic scattering which becomes

and stress fluctuations appear to extend to higher pressur8§sential at higher frequencies. o
and gradually tend to zero together. Obviously, an important pending question is concerned

with the possibility of extending the mean-field approach to
the more important case of topologically disordered random
V. CONCLUSION grain packings. Such a step, however desirable it might be, is

On the basis of the above discussion, we are thereforBy no means straightforward, as can be inferred from the, yet

able to conclude that our mean-field theory provides quite 4'SUPerable, difficulties that have been met when trying to
satisfactory description of the pressure dependence of th‘?e?(tend the thgorles of electronic and vibrational prppertles of
bulk mechanical properties, and hence of the sound velocit);,andom substltutlonal alloys to amorphous materials. These
in an array of frictional balls in the high-pressure range. Thisc2" be assigned to the absence of a natural reference con-
corresponds to the regime in which the ball network isf|gurat|on possessing long range order. Up to now, the only

strongly overdetermined, that is, where connectivity is closéXiSting theoretical frame for amorphous solids is a struc-
to its saturation value. tureless,' homogeneous effective mgdlum. This . would
We believe that this agreement, which permits to accounfmount in the present pro_blem_to treating th_e effective me-
for the non-Hertz behavior down to the= % range, is due to dium in the continuum limit, which is clearly inadequate to
4 )

the fact that this theory does capture, though in an approxiaccount for stress fluctuation effects. In this perspective, nu-

mate manner, the existence of disorder induced stress qu@jeriCal studies appear essentigl as a basis for trying to build
tuations, and that these are self-consistently related with thiP the needed orlg!nal theoretical concepts.

global mechanical state of the system. In other words, th However, we believe that t.h.e qualltatlve |de'a that emerges
true disorder strength in the problem is not intrinsically given!ro™ this work, namely, that it is the disorder induced stress
by the dispersion of unstressed ball diameters, but deteﬂ_uctuatlons that are responsible for the pressure dependence

mined from thistogether withthe elastic deformation field. ©f the sound velocity in granular packings, will carry over, as

We have based our single-site description upon the simwe”' to topologically disordered systems.

plest possible approximation, which amounts to a spherical
averaging of local lattice distortions. That this is sufficient to

produce a satisfactory theory must certainly be attributed to We are grateful to C. Coste, B. Gilles, and J. N. Roux for
the high connectivity of the hcp structure. It should for this fruitful discussions and for communication of their results
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F(a)=

Z|

3
APPENDIX: CALCULATION OF a, B pzl (=20 sin(dg: o), (A6)

We want to calculate here the expression of the coeffiy peing the number of sites in the lattice.

cientsa, B defined in Sec. Ill. For this purpose, we need 0 Taking advantage of the fact that, by symmefiy; (u,
solve the following problem. Consider an ideal hcp Iattice,_u4):ﬁ2,(ug_ua):ﬁS,(us_uz)' one gets

with interball distance at equilibriurd, in which we single

out a central sit€0). Apply to the six balls =1,...,6 of the A;-(up—uy) f 3 — .

corona of its nearest neighbors excess forces directed along UFTZ 3N 21 ApA(q) - n;

the (G) bondsF;=Fn; (see Fig. 4 Call u;=u;f; the result- 4 e

ing displacement of nearest neighbioiThen, by definition, x{cogdq-(A,—f;)]—cogdq- (A, +1,)]}. (A7)

a=u;,/u;, whereu;, is the displacement of the second _ _
neighbor (a) along thef; direction; B=u;z/u;, with u; ~ Analogously, the displacement,, of the second neighbor
being the displacement of the next nearest neighbor along trong Ox,

direction of (1#3)A;+ A, 1. . 3
In order to avoid excessive algebraic heaviness, and in 0 N oA _ &
view of the fact that numerical studies lead us to conclude to - **~ 3N % pr=1 flp- A(0)-Ar{cog da-(2p—Ar)]

the very weak sensitivity of the mean-field results to moder- o
ate variations ofx, 8, we limit ourselves to the simple case —cogdq- (2A,+0) ]} (A8)
of vanishing Mindlin shear stiffness;=0.

In this case rotations become irrelevant and, in the IinearFrom Egs.(3) and (4)

response regime, the force on a ball is related to the displace- . 3
ments of its neighbors by D(q)=defD(q)]= >, T',lpsy (A9)
= p=1
{i} with
so that, inverting in Fourier space, I,=1-cogdq-fy), Tpia=T,. (A10)
_ iq-RA ) .
ui_Ek: e TA(a)F(a) (A2) Finally, one obtains, forv=u,,/uy,
with 3
A(q)=DYq). (A3) > D Xa) El TSR =220 - 251
q p=
From Eq.(9), ﬁ(q) is a 2X 2 matrix acting in(x,y) space, = 3 '
defined by ; 2 DA 2 Ty =20,
= . — q p=
D(q)= 2>, €9 R~RID; =2k >, [1—coddq-f,)]1A,A,. (A11)
{0} p=1
" (A4)  Where we have set
The applied forces are defined by Eg‘):sin(ndq- fp), Tp=sin(dq~fp). (A12)
Fi=F[A1( 81— 8i4) + N 83— i) +N3(Si5— in)], A completely analogous calculation involving the displace-
A mentu,; of the second nearest neighbor yields

3
2 Tpi1+tThio

;‘/—jp 1(Q)p21 I‘|0(TD_ . 2 : )(E(plll_z(pzli)

B= . (A13)

3
2 DO 2, Tp2ph =270

Performing numerically the integrations over the Brillouin zone we obtain

a=0.585405, $=0.232971. (A14)
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